\(C=\left(1-\frac{x}{z}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

Trả lời:

Ta có x-y-z=0

-> x=y+z (1)

C= (1-\(\frac{x}{z}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))

C=\(\frac{\left(x-z\right)\left(y-x\right)\left(z+y\right)}{xyz}\)

C= \(\frac{\left(y+z-z\right)\left(y-\left(y+z\right)\right)\left(z+y\right)}{yz\left(y+z\right)}\)

C= \(\frac{y.-z.\left(z+y\right)}{y.z.\left(y+z\right)}\)

C=-1

Đáp số: C=-1

9 tháng 3 2021

Hình như đề sai hay sao ý?

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn

a: x-y-z=0

=>x=y+z; y=x-z; z=x-y

\(K=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y\cdot\left(-z\right)\cdot x}{xyz}=-1\)

b: Tham khảo:

undefined

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

17 tháng 11 2016

\(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)

\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)

x = y = z

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2^3\)

\(=8\)

1 tháng 3 2017

Làm sao để ra được dòng thứ 3 ak??

26 tháng 2 2018

Áp dụng bđt côsi cho 2 số dương lần lượt ta có : 

\(1+\frac{y}{x}\ge2\sqrt{\frac{y}{x}}\)

\(1+\frac{z}{y}\ge2\sqrt{\frac{z}{y}}\)

\(1+\frac{x}{z}\ge2\sqrt{\frac{x}{z}}\)

Nhân vế theo vế ta đc : \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\ge8\sqrt{\frac{xyz}{xyz}}=8\)

Dấu  = xảy ra khi : \(1=\frac{y}{x}\)=> x=y  và \(1=\frac{z}{y}\) => z=y và \(1=\frac{x}{z}\) => x=z

=> x=y=z

Thay vào M ta được : \(M=\frac{x^2}{2x^2}+\frac{y^2}{2y^2}+\frac{z^2}{2z^2}=\frac{3}{2}\).

1 tháng 9 2016

\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)

\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)

\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

4 tháng 12 2016

\(\frac{\left(z-x\right)+\left(x-y\right)+\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)