K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

Bạn tham khảo nhé

undefined

9 tháng 10 2021

dạ cảm ơn b nhiềuuuu

13 tháng 8 2016

câu 8L \(x+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

ta thấy \(\sqrt{x}+1>=1\)

=> \(\left(\sqrt{x}+1\right)^2>=1\)

=> GTNN =1 khi x=0

bài 6: |x-1|=x+1

TH1: x-1=x+1<=> 0x=2      vô nghiệm

TH2: x-1=-1-x

<=> 2x=0<=> x=0

vậy tập nghiệm S={0}

câu 5: \(\sqrt{x^2+3}=\sqrt{4x}\) diều kiện x>=0

pt<=> \(x^2+3=4x\)

<=> x=3 hoặc x=1

vậy tập nghiệm S={1;3}

câu 2: \(\sqrt{x-2}\left(2\sqrt{x-2}-3\right)=2x-13\)

điều kiện x>=2

đặt \(\sqrt{x-2}=a\)>=0

=> pt có dạng a(2a-3)=4a2-9

<=> 2a2+3a-9=0

<=> a=-3 (loại) hoặc a=3/2

thya vào rồi giải: x-2=9/4

=> a=17/4 (thỏa )

các câu khác tương tự

 

13 tháng 8 2016

vòng mấy z

Ai biết làm câu nào thì giúp mình với . Xin cảm ơnCâu 1:Số đường tròn đi qua 3 điểm không thẳng hàng là  Câu 2:Cho đường tròn (O;2),các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B,C là các tiếp điểm).M là điểm bất kỳ trên cung nhỏ BC.Qua M kẻ tiếp tuyến với đường tròn,cắt AB và AC theo thứ tự ở D và E.Chu vi tam giác ADE là  Câu 3:Tung độ gốc của...
Đọc tiếp

Ai biết làm câu nào thì giúp mình với . Xin cảm ơn

Câu 1:
Số đường tròn đi qua 3 điểm không thẳng hàng là 
 
Câu 2:
Cho đường tròn (O;2),các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B,C là các tiếp điểm).M là điểm bất kỳ trên cung nhỏ BC.Qua M kẻ tiếp tuyến với đường tròn,cắt AB và AC theo thứ tự ở D và E.Chu vi tam giác ADE là 
 
Câu 3:
Tung độ gốc của đường thẳng ?$3x-5y-10=0$ là 
 
Câu 4:
Hai đường thẳng ?$y=2x+3+m$ và ?$y=3x+5-m$ cắt nhau tại 1 điểm trên Oy.Khi đó ?$m=$ 
 
Câu 5:
Nếu 2 đường thẳng y=2x+3+m và y=x+6-m cắt nhau tại một điểm trên trục hoành thì hoành độ giao điểm đó là 
 
Câu 6:
Đường thằng ?$\frac{x}{3}-\frac{y}{8}=1$ cắt trục hoành tại A, trục tung tại B. Diện tích tam giác OAB là 
 
Câu 7:
Tam giác ABC có đường tròn nội tiếp tiếp xúc với AB,BC,CA lần lượt tại M,N,P.
Biết số đo của 3 góc A,B,C tỉ lệ với các số 3,5,2.Vậy số đo góc MNP =  ?$^0$
 
Câu 8:
Nếu 2 đường thẳng ?$y=2x+3+m$ và ?$y=x+6-m$  cắt nhau tại một điểm trên trục tung khi đó ?$m=$ 
(Nhập kết quả dưới dạng số thập phân gọn nhất)
 
Câu 9:
Diện tích tam giác đều ABC ngoại tiếp đường tròn tâm I,bán kính ?$\sqrt[4]{3}$ bằng  ?$cm^2$
(Nhập kết quả dưới dạng số thập phân gọn nhất)
 
Câu 10:
Cho tam giác ABC vuông tại A.Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB,AC lần lượt tại D và E.
Biết AB=3 cm,AC=4cm.Bán kính đường tròn (O) là  cm.
2
16 tháng 8 2016

Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác. 
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất. 

Kết luận: chỉ có 1.

13 tháng 8 2017

câu 5 hoành độ =0

 

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2017

Lời giải:

Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)

Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).

Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)

\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)

\(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)

Thử lại thu được $p=19$ thỏa mãn.