K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

đặt \(A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)

\(3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{18}}-\frac{1}{3^{19}}\)

\(4A=1-\frac{1}{3^{20}}\)

\(A=\frac{1-\frac{1}{3^{20}}}{4}\)

\(M=1+\frac{1-\frac{1}{3^{20}}}{4}=\frac{5-\frac{1}{3^{20}}}{4}\)

Ta có : 1:M=1+3-3^2+3^3-3^4+....+3^19-3^20

             1/M=(1+3^2+3^4+....3^20)-(3+3^3+..+3^19)

              1/M=[(3^20-1)/8]-[(3^21-3)/8]

               1/M=[3^20-3^21+(-2)]/8

Bạn tự làm tiếp nhé

23 tháng 4 2017

Gọi biểu thức phân số đó là A

Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

Ta có công thức :                 \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên ta có 

\(A< 1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1.\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\)

\(A< \frac{99}{100}< 1\Rightarrow A< 1\Rightarrow dpcm\)

ủng hộ nha

23 tháng 4 2017

ta có \(x^2=x.x\le\left(x-1\right)x\)\(\Rightarrow\frac{1}{x^2}< \frac{1}{\left(x-1\right)x}\)\(\frac{1}{\left(x-1\right)x}=\frac{1}{x-1}-\frac{1}{x}\)Vậy ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)=1-\(\frac{1}{100}\le1\)

vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

7 tháng 5 2016

Chào bạn, theo mình thì dạng bài này phải so sánh với 1, sau đây là cách giải của mình : 

Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};...;\frac{1}{10^2}< \frac{1}{9\cdot10}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)

\(=>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)

Chúc bạn học tốt!

7 tháng 5 2016

CM thì mình biết rồi, bài này là tính hồi thi Vio tp nó cho mình bài này với lại trên olm nhiều bạn hỏi lắm nhưng không ai trả lời cả