K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

A B H C 8 3

Tam giác ABC cân ở A nên \(AB=AC=AH+HC=8+3=11\left(cm\right)\)

Tam giác AHB vuông tại H ,theo định lí Pitago ta có :

\(AH^2+HB^2=AB^2\)

=> \(8^2+HB^2=11^2\)

=> \(HB^2=11^2-8^2=57\)

=> \(HB=\sqrt{57}\left(cm\right)\)

Tam giác BHC vuông tại H,theo định lí Pitago ta có :

\(BH^2+HC^2=BC^2\)

=> \(\left(\sqrt{57}\right)^2+3^2=BC^2\)

=> \(57+3^2=BC^2\)

=> \(BC^2=57+9=66\)

=> \(BC=\sqrt{66}\approx7,94\left(cm\right)\)

18 tháng 2 2020

Giải:

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH2+BH2=AB2AH2+BH2=AB2

AH2=AB2−BH2AH2=AB2−BH2

AH2=52−32AH2=52−32

⇒AH2=16⇒AH2=16

⇒AH=4(cm)⇒AH=4(cm)

Ta có:

BH+HC=BCBH+HC=BC

⇒HC=BC−BH⇒HC=BC−BH

⇒HC=8−3⇒HC=8−3

⇒HC=5(cm)⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH2+HC2=AC2AH2+HC2=AC2

42+52=AC242+52=AC2

⇒AC2=41⇒AC2=41

⇒AC=41−−√(cm)

CHÚC HỌC GIỎI

18 tháng 2 2020

Hình tự vẽ nha bạn :)

Áp dụng định lí Pytago trong tam giác vuông ABH , ta có :

AH2 + BH2 = AB2

=> AH2 = AB2 - BH2 = 52 - 32

=> AH2 = 25 - 9 = 16

=> AH = \(\pm4\)

Mà AH > 0 => AH = 4 cm

Lại có :

BH + HC = BC

=> HC = BC - BH = 8 - 3

=>  HC = 5cm

Áp dụng định lí Pytago trong tam giác vuông AHC, ta có :

AC2 = AH2 + HC2

=> AC2 = 42 + 52 = 16 + 25

=> AC2 = 41

=> AC = \(\pm\sqrt{41}\)

Mà AC > 0 =>  AC  = \(\sqrt{41}\) cm

Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)cm

29 tháng 3 2016

a.Xét tam giác ABC vuông tại B :

BC2=BA2+CA2

152=82+CA2

=> CA2=152-82=225-64

=>CA2=161

=>CA=căng 161

  1.  
7 tháng 2 2020

Hình bạn tự vẽ nha!

Đề phải là \(\Delta ABC\) vuông tại A nhé.

+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).

=> \(BC^2=3^2+4^2\)

=> \(BC^2=9+16\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).

+ Vì điểm I cách đều 3 cạnh của \(\Delta ABC\left(gt\right)\)

=> \(BI=CI.\)

Xét 2 \(\Delta\) vuông \(BIM\)\(CIM\) có:

\(\widehat{BMI}=\widehat{CMI}=90^0\left(gt\right)\)

\(BI=CI\left(cmt\right)\)

Cạnh IM chung

=> \(\Delta BIM=\Delta CIM\) (cạnh huyền - cạnh góc vuông).

=> \(BM=CM\) (2 cạnh tương ứng).

=> M là trung điểm của \(BC.\)

=> \(BM=CM=\frac{1}{2}BC\) (tính chất trung điểm).

=> \(BM=CM=\frac{1}{2}.5=\frac{5}{2}=2,5\left(cm\right).\)

=> \(BM=2,5\left(cm\right).\)

Vậy \(BM=2,5\left(cm\right).\)

Chúc bạn học tốt!

22 tháng 12 2020

s