Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B H C 8 3
Tam giác ABC cân ở A nên \(AB=AC=AH+HC=8+3=11\left(cm\right)\)
Tam giác AHB vuông tại H ,theo định lí Pitago ta có :
\(AH^2+HB^2=AB^2\)
=> \(8^2+HB^2=11^2\)
=> \(HB^2=11^2-8^2=57\)
=> \(HB=\sqrt{57}\left(cm\right)\)
Tam giác BHC vuông tại H,theo định lí Pitago ta có :
\(BH^2+HC^2=BC^2\)
=> \(\left(\sqrt{57}\right)^2+3^2=BC^2\)
=> \(57+3^2=BC^2\)
=> \(BC^2=57+9=66\)
=> \(BC=\sqrt{66}\approx7,94\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH2+BH2=AB2AH2+BH2=AB2
AH2=AB2−BH2AH2=AB2−BH2
AH2=52−32AH2=52−32
⇒AH2=16⇒AH2=16
⇒AH=4(cm)⇒AH=4(cm)
Ta có:
BH+HC=BCBH+HC=BC
⇒HC=BC−BH⇒HC=BC−BH
⇒HC=8−3⇒HC=8−3
⇒HC=5(cm)⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH2+HC2=AC2AH2+HC2=AC2
42+52=AC242+52=AC2
⇒AC2=41⇒AC2=41
⇒AC=41−−√(cm)
CHÚC HỌC GIỎI
Hình tự vẽ nha bạn :)
Áp dụng định lí Pytago trong tam giác vuông ABH , ta có :
AH2 + BH2 = AB2
=> AH2 = AB2 - BH2 = 52 - 32
=> AH2 = 25 - 9 = 16
=> AH = \(\pm4\)
Mà AH > 0 => AH = 4 cm
Lại có :
BH + HC = BC
=> HC = BC - BH = 8 - 3
=> HC = 5cm
Áp dụng định lí Pytago trong tam giác vuông AHC, ta có :
AC2 = AH2 + HC2
=> AC2 = 42 + 52 = 16 + 25
=> AC2 = 41
=> AC = \(\pm\sqrt{41}\)
Mà AC > 0 => AC = \(\sqrt{41}\) cm
Vậy AH = 4 cm ; HC = 5 cm ; AC = \(\sqrt{41}\)cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a.Xét tam giác ABC vuông tại B :
BC2=BA2+CA2
152=82+CA2
=> CA2=152-82=225-64
=>CA2=161
=>CA=căng 161
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha!
Đề phải là \(\Delta ABC\) vuông tại A nhé.
+ Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go).
=> \(BC^2=3^2+4^2\)
=> \(BC^2=9+16\)
=> \(BC^2=25\)
=> \(BC=5\left(cm\right)\) (vì \(BC>0\)).
+ Vì điểm I cách đều 3 cạnh của \(\Delta ABC\left(gt\right)\)
=> \(BI=CI.\)
Xét 2 \(\Delta\) vuông \(BIM\) và \(CIM\) có:
\(\widehat{BMI}=\widehat{CMI}=90^0\left(gt\right)\)
\(BI=CI\left(cmt\right)\)
Cạnh IM chung
=> \(\Delta BIM=\Delta CIM\) (cạnh huyền - cạnh góc vuông).
=> \(BM=CM\) (2 cạnh tương ứng).
=> M là trung điểm của \(BC.\)
=> \(BM=CM=\frac{1}{2}BC\) (tính chất trung điểm).
=> \(BM=CM=\frac{1}{2}.5=\frac{5}{2}=2,5\left(cm\right).\)
=> \(BM=2,5\left(cm\right).\)
Vậy \(BM=2,5\left(cm\right).\)
Chúc bạn học tốt!