K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Áp dụng định lí Cosin : 

\(BC^2=AB^2+AC^2-2AB.AC.cosA\)

25 tháng 9 2016

a, \(\sqrt{7}\) cm

b, căn 21 cm

c, \(\sqrt{7-2\sqrt{3}}\) cm

a: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{5-BC^2}{2\cdot1\cdot2}=\dfrac{5-BC^2}{4}\)

\(\Leftrightarrow\dfrac{5-BC^2}{4}=\dfrac{-1}{2}\)

\(\Leftrightarrow5-BC^2=-2\)

\(\Leftrightarrow BC=\sqrt{7}\left(cm\right)\)

b: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{125-BC^2}{100}\)

\(\Leftrightarrow125-BC^2=50\)

hay \(BC=5\sqrt{3}\left(cm\right)\)

c: \(\cos BAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{7-BC^2}{8\sqrt{3}}\)

\(\Leftrightarrow7-BC^2=4\sqrt{3}\)

hay \(BC=2-\sqrt{3}\left(cm\right)\)

17 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=1\cdot4=4\)

=>\(AH=\sqrt{4}=2\left(cm\right)\)

BC=BH+CH

=>BC=1+4=5(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=1\cdot5=5\\AC^2=4\cdot5=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{\sqrt{5}}{5}\)

nên \(\widehat{C}\simeq27^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-27^0=63^0\)

b: AH=2cm

=>H thuộc (A;2cm)

Xét (A;2cm) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;2cm)

c: Sửa đề: BDEH

Xét ΔAHB vuông tại H và ΔADE vuông tại D có

AH=AD

\(\widehat{HAB}=\widehat{DAE}\)

Do đó: ΔAHB=ΔADE

=>HB=DE

Xét tứ giác BDEH có

BH//ED

BH=ED

Do đó: BDEH là hình bình hành

12 tháng 11 2021

đề sai rồi bạn

12 tháng 6 2015

Tam giác ABC vuông, AH là đường cao => áp dụng hệ thức lượng trong tam giác vuông ta có: 

\(AH^2=HB.HC\Leftrightarrow HB.HC=4\). HB+HC=5.

giải hệ phương trình trên ra đc: HB=1, HC=4 hoặc HB=4, HC=1

th1: HB=1, HC=4

\(AB^2=HB.BC=1.5=5\Leftrightarrow AB=\sqrt{5}\)cm; \(AC^2=HC.BC=4.5=20\Leftrightarrow AC=\sqrt{20}\)cm.

tương tự bạn làm trường hợp 2 nha.

nhớ L I K E