Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}\left(\frac{2}{75}\right)\)
\(=\frac{1}{75}\)
b, \(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1004}{2010}\right)\)
\(=2\left(\frac{502}{1005}\right)\)
\(=\frac{1004}{1005}\)
Tk hộ =v
\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}.\frac{2}{75}=\frac{1}{75}\)
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)=2.\left(\frac{1}{2}-\frac{1}{2010}\right)=2.\frac{502}{1005}=\frac{1004}{1005}\)
C=4/2.4+4/4.6+4/6.8+...+4/2008.2010
C = 2 ( 2 / 2.4 + 2/4.6 + 2/6.8 + ...+2/2008.2010)
C = 2 ( 1 - 1/4 + 1/4 - 1/6+1/6 - 1/8 +....+1/2008 - 1/2010 )
C = 2 ( 1 - 1 / 2010 )
C = 2 . 2009/2010
C = 2009 / 1005
Chúc bạn học tốt !
Ta có :
\(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(2B=\frac{2}{25.27}+\frac{1}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\)
\(2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+....+\frac{1}{73}-\frac{1}{75}\)
\(2B=\frac{1}{25}-\frac{1}{75}\)
\(2B=\frac{2}{75}\)
\(\Rightarrow B=\frac{1}{75}\)
Vậy B = \(\frac{1}{75}\)
\(F=\frac{4}{2.3}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow F=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(\Rightarrow F=2.\frac{502}{1005}=\frac{1004}{1005}\)
Vậy F = \(\frac{1004}{1005}\)
A = \(\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
=\(7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
=\(7\left(\frac{1}{10}-\frac{1}{70}\right)\)
=\(7.\frac{3}{35}\)
=\(\frac{3}{5}\)
B=\(\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
=\(\frac{1}{2}\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
=\(\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)\)
=\(\frac{1}{2}.\frac{2}{75}\)
=\(\frac{1}{75}\)
a,
suy ra A = 7. (1/10.11+1/11.12+1/12.13+.......+1/69.70)
suy ra A = 7. ( 1/10 - 1/11+ 1/11 - 1/12 + 1/12 - 1/13+ ............. + 1/69 - 1/70)
suy ra A = 7. ( 1/ 10 - 1/70)
suy ra A= 7. 3/35
suy ra A= 3/5
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
1) A=7/10.11+7/11.12+7/12.13+...+7/69.70
A=7.(1/10.11+1/11.12+1/12.13+...+1/69.70)
A= 7.(1/10-1/11+1/11-1/12+1/12-1/13+...+1/69-1/70)
A= 7.(1/10-1/70)
A=7.3/35=3/5
2)B=1/25.27+1/27.29+1/29.31+...+1/73.1/75
B=1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
B=1/25-1/75=2/75
A = 7/ 10.11 + 7/ 11.12 + 7/ 12.13 + .... + 7/69.70
(1/7).A=1/10.11+1/11.12+...+1/69.70
=1/10-1/11+1/11-1/12+...+1/69-1/70
=1/10-1/70=3/35
=>A=7.(3/35)
=3/5
2 ) B = 1/ 25.27 + 1/ 27.29 + 1/29.31+ ......+ 1/ 73.75
=>(1/2).B=2/25.27+...+2.73.75
=1/25-1/27+...+1/73-1/75
=1/25-1/75
=2/75
=>B=4/75
Gọi \(\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
là A, ta có
\(A=\dfrac{1}{25.27}+\dfrac{1}{27.29}+\dfrac{1}{29.31}+...+\dfrac{1}{73.75}\)
\(\Rightarrow2.A=\dfrac{2}{25.27}+\dfrac{2}{27.29}+\dfrac{2}{29.31}+...+\dfrac{2}{73.75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{29}+...+\dfrac{1}{73}-\dfrac{1}{75}\)\(\Rightarrow2.A=\dfrac{1}{25}-\dfrac{1}{75}\)
\(\Rightarrow2.A=\dfrac{2}{75}\)
\(\Rightarrow A=\dfrac{2}{75}\div2\)
\(\Rightarrow A=\dfrac{1}{75}\)
KL: Vậy A =\(\dfrac{1}{75}\)
\(\text{Ta có:}\) \(C=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{1}{2}-\frac{1}{2010}\)
\(\Rightarrow\frac{1}{2}C=\frac{502}{1005}\)
\(\Rightarrow C=\frac{502}{1005}:\frac{1}{2}=\frac{1004}{1005}\)
Ta có: \(B=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)
\(\Rightarrow2B=\frac{2}{25.27}+\frac{2}{27.29}+...+\frac{2}{73.75}\)
\(\Rightarrow2B=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+....+\frac{1}{73}-\frac{1}{75}\)
\(\Rightarrow B=\left(\frac{1}{25}-\frac{1}{75}\right):2\)
\(\Rightarrow B=\frac{1}{75}\)
Vậy \(B=\frac{1}{75}\)
\(C=\frac{4}{2.4}+\frac{4}{4.6}+...+\frac{4}{2008.2010}\)
\(\Rightarrow\frac{2}{4}C=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2008}-\frac{1}{2010}\)
\(\Rightarrow\frac{2}{4}C=\frac{1}{2}-\frac{1}{2010}=\frac{502}{1005}\)
\(\Rightarrow C=\frac{502}{1005}:\frac{2}{4}=\frac{1004}{1005}\)
Vậy \(C=\frac{1004}{1005}\)
Ủng hộ tớ nha m.n ^_^