K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

a/ \(A=\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{56}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{4}\)

b/ \(B=\frac{5}{11.16}+\frac{5}{16.21}+........+\frac{5}{61.66}\)

\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+........+\frac{1}{61}-\frac{1}{66}\)

\(=\frac{1}{11}-\frac{1}{66}\)

\(=\frac{5}{66}\)

22 tháng 11 2017

a) \(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

b) \(B=\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)

\(B=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

\(B=\frac{1}{11}-\frac{1}{66}=\frac{5}{66}\)

7 tháng 8 2016

mk làm tắt dc ko

7 tháng 8 2016

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

1 tháng 12 2019

a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

  \(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)

 \(A=\frac{1}{11}-\frac{1}{66}\)

\(A=\frac{5}{66}\)

b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(B=1-\frac{1}{7}\)

\(B=\frac{6}{7}\)

_Học tốt nha_

12 tháng 1 2017

Bài 2:

a) \(\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{61.66}\)

\(=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

\(=\frac{1}{11}-\frac{1}{66}\)

\(=\frac{5}{66}\)

b) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(=1-\frac{1}{7}\)

\(=\frac{6}{7}\)

c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2006.2007}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2006}-\frac{1}{2007}\)

\(=1-\frac{1}{2007}\)

\(=\frac{2006}{2007}\)

15 tháng 1 2017

Bài 2:

a) \(\frac{5}{11.16}\) + \(\frac{5}{16.21}\) + \(\frac{5}{21.26}\) + ... + \(\frac{5}{61.66}\)

= \(\frac{1}{11}\) - \(\frac{1}{16}\) + \(\frac{1}{16}\) - \(\frac{1}{21}\) + \(\frac{1}{21}\) - \(\frac{1}{26}\) + ... + \(\frac{1}{61}\) - \(\frac{1}{66}\)

= \(\frac{1}{11}\) - \(\frac{1}{66}\)

= \(\frac{5}{66}\)

b) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

= \(1-\frac{1}{7}\)

= \(\frac{6}{7}\)

c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}+...+\frac{1}{2006.2007}\)

= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1989}-\frac{1}{1990}+...+\frac{1}{2006}-\frac{1}{2007}\)

= \(1-\frac{1}{2007}\)

= \(\frac{2006}{2007}\)

Chúc bạn học tốt!

8 tháng 3 2016

T-i-ck nha,k nha, câu trả lờii sẽ hiện ra

8 tháng 3 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)

\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\)

\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

4 tháng 7 2019

= 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9

= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/9

=1-1/9

=8/9

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(1-\frac{1}{9}\)

\(\frac{8}{9}\)

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\) b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\) c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\) b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2Bài 3: Tính giá trị của biểu thức...
Đọc tiếp

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)

Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2

Bài 3: Tính giá trị của biểu thức sau:

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)

Bài 4: Tính nhanh:

\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)

\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)

Bài 5: Thực hiện phép tinh sau:

a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)

b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)

giúp mk nha! nhớ viết cách làm nha!

 

13
23 tháng 10 2016

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

14 tháng 12 2016
A=\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+....+\frac{5}{61.66}\)A=\(\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)A=5/11-5/66A=25/66  
10 tháng 6 2016

A = \(\frac{-79}{90}\)

B = \(\frac{8}{9}\)

10 tháng 6 2016

cách giải sao chỉ mình với

23 tháng 6 2015

\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)

=\(\frac{1}{5}.\frac{5}{11.16}+\frac{1}{5}.\frac{5}{16.21}+\frac{1}{5}.\frac{5}{21.26}+...+\frac{1}{5}.\frac{5}{61.66}\)

=\(\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)

=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)

=\(\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)

=\(\frac{1}{5}.\left(\frac{6}{66}-\frac{1}{66}\right)=\frac{1}{5}.\frac{5}{66}=\frac{1}{66}\)

23 tháng 6 2015

Đặt A = \(\frac{1}{11.16}+...+\frac{1}{61.66}\)

 

5A    = \(\frac{5}{11.16}+..+\frac{5}{61.66}\)

5a    = \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)

5a   =  \(\frac{1}{11}-\frac{1}{61}\)

5a   =  50/671

a     = \(\frac{50}{671}:5=\frac{10}{671}\)

19 tháng 7 2015

a,b you cứ tính bt nhé

c)\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{4}-\frac{1}{11}\)

\(=\frac{7}{44}\)

d) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)

\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)

\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)

\(=5\left(1-\frac{1}{31}\right)\)

\(=5.\frac{30}{31}\)

\(=\frac{150}{31}\)