K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, 1 + 2 + 3 +...+ n = (n + 1) x n : 2 

b, 2 + 4 + 6+....+2.n = (2.n + 2) x n : 2

4 tháng 9 2018

a) 1 + 2 + 3 + 4 + ... + n

Giải : Khoảng cách giữa hai số liên tiếp là 1 đơn vị

Số số hạng của dãy số là :

 (n - 1) : 1 + 1 = n (số hạng)

Tổng của dãy số là : (n + 1) . n : 2

3 tháng 9 2016

a) 1 + 2 + 3 + ... + n

\(\frac{\left(n+1\right).n}{2}\)

b) 1 + 3 + 5 + 7 + ... + (2n + 1)

\(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)

\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)

\(=2.\left(n+1\right).\left(n+1\right):2\)

\(=\left(n+1\right)^2\)

c) 2 + 4 + 6 + 8 + ... + 2.n

= 2.(1 + 2 + 3 + 4 + ... + n)

\(=2.\frac{\left(n+1\right).n}{2}\)

= (n + 1).n

21 tháng 2 2017

i don't know

3 tháng 7 2021

I.

Ta có:

1 + 2 = 3 (Số liền trước 4)

1 + 2 + 4 = 7 (Số liền trước 8)

1 + 2 + 4 + 8 = 15 (Số liền trước 16)

<=> 1 + 2 + 4 + 8 + 16 + ... + 4096 sẽ bằng số liền trước 8192 => Số liền trước 8192 là 8191:

=> 8191 + 8192 = 16383

3 tháng 7 2021

II.

a)

Áp dụng theo công thức:

Số số hạng:

\(\left(n-1\right):1+1=n\) (số hạng)

Tổng:

\(\left(n+1\right)\frac{n}{2}\)

b) 

Số số hạng:

\(\frac{2n-2}{2}+1=\frac{2\left(n-1\right)}{2}+1=n\)

Tổng:

\(\frac{\left(2n+2\right)n}{2}=\left(n+1\right)n\)

c) 

Số số hạng:

\(\left(2005-1\right):3+1=669\) (số hạng)

Tổng:

\(\left(2005+1\right).669:2=671007\)

19 tháng 10 2021

1,Tính các tổng sau. a) 1 + 2+ 3+ 4 +....+ n

b) 2+4+6+8+...+2.n

c) 1+3+5+7+...+(2.n +1)

d) 1+4+7+10+..+2005

e) 2+5+8+...+2006

f) 1+5+9+..+2001

2,Tính nhanh : A = 1 +2 + 4 + 8 +16 + ...+ 8192 3,

a, Tính tổng các số lẻ có 2 chữ số.

b,Tính tổng các số chẵn có 2 chữ số.

4,a,Tổng 1 +2+3+....+n có bao nhiêu số hạng để kết quả tổng bằng 190

b,Có hay không số tự nhiên n sao cho 1+2+3+...+n =2004

c,Chứng minh rằng: [(1+2+3+...+n)-7]không chia hết cho 10

17 tháng 6 2018

Cái tên.. àk mà thôi -_- 

\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)

\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)

\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)

\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)

\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)

\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)

Chúc bạn học tốt ~ 

17 tháng 6 2018

Cự giải nha bn 

26 tháng 8 2018

a)1+2+3+...+n

=[(n-1):1+1].(n+1):2

=n.( n+1)/2

b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2

=n.n=n2

17 tháng 1 2019

a) 1+2+3+...+n

= [(n-1):1+1].(n+1):2

= n.( n+1)/2

b) {[(2n-1)-1]:2+1}. [(2n-1)+1]:2

= n.n = n2

18 tháng 1 2019

Làm bài khó nhất thôi,còn lại tương tự.

a/ Số số hạng của dãy số trên là: \(\frac{\left(2n-1\right)}{2}+1=n+\frac{1}{2}\) số hạng

Tổng trên là \(A=\frac{\left(2n+2\right)\left(n+\frac{1}{2}\right)}{2}=\frac{n\left(2n+2\right)+\frac{1}{2}\left(2n+2\right)}{2}\)\(=\frac{2n^2+3n+1}{2}\)