K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Làm bài khó nhất thôi,còn lại tương tự.

a/ Số số hạng của dãy số trên là: \(\frac{\left(2n-1\right)}{2}+1=n+\frac{1}{2}\) số hạng

Tổng trên là \(A=\frac{\left(2n+2\right)\left(n+\frac{1}{2}\right)}{2}=\frac{n\left(2n+2\right)+\frac{1}{2}\left(2n+2\right)}{2}\)\(=\frac{2n^2+3n+1}{2}\)

15 tháng 8 2023

a) \(1+2+3+4+...+n\)

\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right):2\)

\(=n\left(n+1\right):2\)

\(=\dfrac{n\left(n+1\right)}{2}\)

b) \(2+4+6+..+2n\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

c) \(1+3+5+...+\left(2n+1\right)\)

\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)

\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)

\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)

\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)

\(=\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n+1\right)\)

15 tháng 8 2023

d) \(1+4+7+10+...+2005\)

\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)

\(=2006\cdot\left(2004:3+1\right):2\)

\(=2006\cdot\left(668+1\right):2\)

\(=1003\cdot669\)

\(=671007\)

e) \(2+5+8+...+2006\)

\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)

\(=2008\cdot\left(2004:3+1\right):2\)

\(=1004\cdot\left(668+1\right)\)

\(=1004\cdot669\)

\(=671676\)

g) \(1+5+9+...+2001\)

\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)

\(=2002\cdot\left(2000:4+1\right):2\)

\(=1001\cdot\left(500+1\right)\)

\(=1001\cdot501\)

\(=501501\)

17 tháng 6 2018

Cái tên.. àk mà thôi -_- 

\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)

\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)

\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)

\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)

\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)

\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)

Chúc bạn học tốt ~ 

17 tháng 6 2018

Cự giải nha bn 

3 tháng 1 2018

a, S= [1+(-3)]+[5+(-7)]+.......+[15+(-17)]

     S= (-2)+(-2)+......+(-2)

Có 10 số (-2)

      S= (-2) x 10 =(-20)

b,  S =[(-2)+4]+[(-6)+8]+......+[16+(-18)]

     S=2+2+2+......+2

Có 11 số 2

     S= 2 x 11 =22

3 tháng 1 2018

1001 nhé

nhóm 2 số và 1 nhóm có kq = -1.có 1000 nhóm và thừa số 2001

-1000+2001=1001

dvhntgikfdiugdtjtyujhtfuj0t 

6ujh6tyuj65styu

641si

ewt45r65su4dtsua1rtw1ge4h43rth443t5hr45t5h4545

3 tháng 1 2018

S = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + 9 + (-10) + (-11) + ... + 2001

S = [1 + (-2) + (-3) + 4] + [5 + (-6) + (-7) + 8] + [9 + (-10) + (-11) + 12] + ... + [1997 + (-1998) + (-1999) + 2000) + 2001

S = 0 + 0 + 0 + ..... + 0 + 2001

 S = 2001