Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.
Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40
Ta lại có AB= DH =4 cm nên CD = DH+HC 4+ 3/ tan 40
Vậy diện tích tứ giác ABCD = (AB+CD).BH/2
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{C}=180^o-80^o=100^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{D}=180^o-60^o=120^o\)
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow55^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-55^o=125^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow\widehat{B}+65^o=180^o\)
\(\Rightarrow\widehat{B}=180^o-65^o=115^o\)
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông
kẻ đường cao BH
xét tứ giác ABHD có góc A=góc D=góc H=90 độ
=> ABHD là hình chữ nhật
=> S ABHD=AB.AD=4.3=12 cm vuông
xét tam giác vuông BHC có tanC=BH/HC =>HC=BH/tanC=3/tan\(40^0\)=3.6 cm
=> S BHC=1/2.BH. HC=1/2.3.3,6=5,4 cm vuông
=> S ABCD= S ABHC+S BHC=12+5,4=17,4 cm vuông
Áp dụng tcdtsbn:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=36^0\\\widehat{B}=72^0\\\widehat{C}=108^0\\\widehat{D}=144^0\end{matrix}\right.\)
Áp dụng gì thế bạn ơi ;-;