Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi đường chéo AC = 2 3 , đường chéo BD = 2 thì để ý rằng AC và BD vuông góc, ta có
Nên ∠ (DAC) = 30 ° từ đó góc A của hình thoi là 60 ° . Suy ra ∠ C = 60 ° còn ∠ B = ∠ D = 120 °
Xét hình bình hành \(ABCD\)có \(O\)là giao điểm của \(AC\)và \(BD\).
Khi đó \(O\)là trung điểm của \(AC\)và \(BD\).
Độ dài hai đường chéo tỉ lệ với độ dài hai cạnh liên tiếp nên \(\frac{BD}{AC}=\frac{AB}{AD}\Leftrightarrow\frac{DA}{OA}=\frac{AB}{OB}\).
Xét tam giác \(DAB\)và tam giác \(AOB\)có:
\(\widehat{DBA}=\widehat{ABO}\)(góc chung)
\(\frac{DA}{AO}=\frac{AB}{OB}\)(cmt)
Suy ra \(\Delta DAB~\Delta AOB\left(c.g.c\right)\).
suy ra \(\widehat{AOB}=\widehat{DAB}\)(hai góc tương ứng)
Ta có đpcm.