Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Thay dấu "=" thành $\geq $ ta được BĐT Holder. Dấu "=" xác định tại $\sin A=\sin B=\sin C$ hay tam giác $ABC$ đều.
Chứng minh cụ thể như sau:
\(\frac{1}{1+\frac{1}{\sin A}}+\frac{1}{1+\frac{1}{\sin B}}+\frac{1}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{1}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
\(\frac{\frac{1}{\sin A}}{1+\frac{1}{\sin A}}+\frac{\frac{1}{\sin B}}{1+\frac{1}{\sin B}}+\frac{\frac{1}{\sin C}}{1+\frac{1}{\sin C}}\geq 3\sqrt[3]{\frac{\frac{1}{\sin A\sin B\sin C}}{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
Cộng theo vế và rút gọn:
\(\Rightarrow 3\geq 3\frac{1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}}}{\sqrt[3]{(1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})}}\)
\(\Rightarrow (1+\frac{1}{\sin A})(1+\frac{1}{\sin B})(1+\frac{1}{\sin C})\geq (1+\sqrt[3]{\frac{1}{\sin A\sin B\sin C}})^3\)
Dấu "=" xảy ra (như đề bài) khi \(\sin A=\sin B=\sin C\Rightarrow \angle A=\angle B=\angle C=60^0\)
\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)=1\)
\(\Rightarrow B-C=0\Rightarrow B=C\)
\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))
\(\Leftrightarrow2sinA.sinB=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)
\(\Leftrightarrow cos\left(A-B\right)=cosB\)
\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)
Mà \(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)
\(\Rightarrow\Delta ABC\) vuông cân tại A
Đặt \(abc=k^3\), khi đó tồn tại các số thực dương x,y,z sao cho:
\(a=\frac{ky}{x};b=\frac{kz}{y};c=\frac{kx}{z}\)
Khi đó bất đẳng thức cần chứng minh tương đương:
\(\frac{1}{\frac{ky}{x}\left(\frac{kz}{y}+1\right)}+\frac{1}{\frac{kz}{y}\left(\frac{kx}{z}+1\right)}+\frac{1}{\frac{kx}{z}\left(\frac{ky}{x}+1\right)}\ge\frac{3}{k\left(k+1\right)}\)
Hay \(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\ge\frac{3}{k+1}\)
Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{x}{y+kz}+\frac{y}{z+kx}+\frac{z}{x+ky}\)
\(=\frac{x^2}{x\left(y+kz\right)}+\frac{y^2}{y\left(z+kx\right)}+\frac{z^2}{z\left(x+ky\right)}\ge\frac{\left(x+y+z\right)^2}{x\left(y+kz\right)+y\left(z+kx\right)+z\left(x+ky\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(k+1\right)\left(xy+yz+zx\right)}\ge\frac{3}{k+1}\)
Vậy bất đẳng thức được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow sin2a=2sina.cosa>0\)
\(\Rightarrow sin2a=\sqrt{1-cos^22a}=\frac{3\sqrt{7}}{8}\)
\(cos2a=1-2sin^2a=\frac{1}{8}\)
\(\Leftrightarrow sin^2a=\frac{7}{16}\Rightarrow sina=-\frac{\sqrt{7}}{4}\)
\(\Rightarrow M=\frac{-\frac{\sqrt{7}}{4}-\frac{3\sqrt{7}}{8}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{8}}=...\)
\(sinx\left(1-tan^2\frac{x}{2}\right)=sinx\left(1-\frac{sin^2\frac{x}{2}}{cos^2\frac{x}{2}}\right)=sinx\left(1-\frac{1-cosx}{1+cosx}\right)\)
\(=sinx\left(\frac{1+cosx-\left(1-cosx\right)}{1+cosx}\right)=\frac{2sinx.cosx}{1+cosx}\)
\(1-sin2x.sin3x-cos2x.cos3x=1-\left(cos3x.cos2x+sin3x.sin2x\right)=1-cos\left(3x-2x\right)=1-cosx\)
\(\Rightarrow\frac{1-sin2x.sin3x-cos2x.cos3x}{sinx\left(1-tan^2\frac{x}{2}\right)}=\frac{1-cosx}{\frac{2sinx.cosx}{1+cosx}}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{2sinx.cosx}\)
\(=\frac{1-cos^2x}{2sinx.cosx}=\frac{sin^2x}{2sinx.cosx}=\frac{sinx}{2cosx}=\frac{1}{2}tanx\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt[3]{x}}=a\\\frac{1}{\sqrt[3]{y}}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=9\\\left(a+b\right)\left(a+1\right)\left(b+1\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\\left(a+b\right)\left(ab+a+b+1\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\ab\left(a+b\right)+\left(a+b\right)^2+\left(a+b\right)=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^3-3ab\left(a+b\right)=9\\3ab\left(a+b\right)+3\left(a+b\right)^2+3\left(a+b\right)=54\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)^3+3\left(a+b\right)^2+3\left(a+b\right)=63\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2+3\left(a+b\right)+1=64\)
\(\Leftrightarrow\left(a+b+1\right)^3=4^3\)
\(\Leftrightarrow a+b+1=4\Rightarrow a+b=3\)
\(\Rightarrow3\left(ab+3+1\right)=18\Rightarrow ab=2\)
Theo Viet đảo; a và b là nghiệm:
\(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(2;1\right)\Rightarrow\left(x;y\right)=\left(1;\frac{1}{8}\right);\left(\frac{1}{8};1\right)\)
Đặt \(\left(\frac{1}{sinA};\frac{1}{sinB};\frac{1}{sinC}\right)=\left(a;b;c\right)\Rightarrow a;b;c>0\), áp dụng BĐT AM-GM
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{3}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cộng vế với vế và rút gọn: \(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\Leftrightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Leftrightarrow\left(1+\frac{1}{sinA}\right)\left(1+\frac{1}{sinB}\right)\left(1+\frac{1}{sinC}\right)\ge\left(1+\frac{1}{\sqrt[3]{sinA.sinB.sinC}}\right)^3\)
Dấu "=" xảy ra khi và chỉ khi \(\frac{1}{sinA}=\frac{1}{sinB}=\frac{1}{sinC}\Leftrightarrow\)
\(A=B=C=60^0\)