Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1\right)=-\infty\)
`a)lim_{x->+oo} (2x-\sqrt{x^2+4x-3})` `ĐK: x < -2-\sqrt{7};x > -2+\sqrt{7}`
`=lim_{x->+oo} [x(2-\sqrt{1+4/x -3/[x^2]}]`
`=+oo`
`b)lim_{x->+oo} (\sqrt{4x^2-3x+1}-2x)`
`=lim_{x->+oo} [4x^2-3x+1-4x^2]/[\sqrt{4x^2-3x+1}+2x]`
`=lim_{x->+oo} [-3x+1]/[\sqrt{4x^2-3x+1}+2x]`
`=lim_{x->+oo} [-3+1/x]/[\sqrt{4-3/x+1/[x^2]}+2]`
`=-3/4`
a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)
b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)
\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)
c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)
\(=\dfrac{4}{11}\)
Lời giải:
a)
\(\lim\limits_{x\to +\infty}\frac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}=\lim\limits_{x\to +\infty}\frac{\sqrt[3]{1+\frac{2}{x}-\frac{4}{x^2}+\frac{1}{x^3}}}{\sqrt{2+\frac{1}{x}-\frac{8}{x^2}}}\)
\(=\frac{1}{\sqrt{2}}\)
b)
\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2-2x+4}-x}{3x-1}=\lim\limits_{x\to -\infty}\frac{\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1}{-3+\frac{1}{x}}=\frac{-1}{3}\)
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{x}{x}+\dfrac{3}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=\dfrac{1}{3}\)
b/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{2x}{x^2}+\dfrac{4}{x^2}}-\dfrac{x}{x}}{\dfrac{3x}{x}-\dfrac{1}{x}}=-\dfrac{2}{3}\)
Lời giải:
a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)
\(=+\infty\)
`a)lim_{x->+oo}[x+1]/[x^2+x+1]`
`=lim_{x->+oo}[1/x+1/[x^2]]/[1+1/x+1/[x^2]]`
`=0`
`b)lim_{x->+oo}[3x+1]/[3x^2-x+5]`
`=lim_{x->+oo}[3/x+1/[x^2]]/[3-1/x+5/[x^2]]`
`=0`
`c)lim_{x->-oo}[3x+5]/[\sqrt{x^2+x}]`
`=lim_{x->-oo}[3+5/x]/[-\sqrt{1+1/x}]`
`=-3`
`d)lim_{x->+oo}[-5x+1]/[\sqrt{3x^2+1}]`
`=lim_{x->+oo}[-5+1/x]/[\sqrt{3+1/[x^2]}]`
`=-5/3`
a/ \(=\lim\limits_{x\rightarrow4^-}\dfrac{5-2x}{4-x}=\dfrac{-3}{0}=-\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}x^3\left(-1+\dfrac{1}{x}-\dfrac{2}{x^2}+\dfrac{1}{x^3}\right)=-\infty\)