K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

Vậy \(x\in\left\{\pm7\right\}\)

1 tháng 8 2019

\(\left|x\right|=0\)

\(\Rightarrow x=0\)

Vậy x = 0

27 tháng 11 2017

bài 1)

70:2=35(m)

Gọi a và b lần lượt là chiều rộng và chiều dài của miếng đất

Từ b/a = 4 /3 = > 3/a = 4 /b

= > 3/ a = 4/ b = 3 + 4/ a + b = 7/ 35 = 5 /3 a = 5

= > a = 3.5 = 15/ 4 b = 5

= > b = 5.4 = 20

Vậy diện tích miếng đất đó là:

15.20=300(m2)

2) Bài 138 (Sách bài tập - tập 1 - trang 33)

 bài 2 cậu vào cái ý là có 

12 tháng 6 2018

1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)

   b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)

\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)

\(=5+1+0,5=6,5\)

2) a) 1/2 + 2/3x = 1/4

=> 2/3x            = 1/4 - 1/2

=> 2/3x            = -1/4

=> x                = -1/4 : 2/3

=> x                = -3/8

b) 3/5 + 2/5 : x = 3 1/2

=> 3/5 + 2/5 : x = 7/2

=>         2/5 : x  = 7/2 - 3/5

=>         2/5 : x  = 29/10

=>               x    = 2/5 : 29/10

=>               x    = 4/29

c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007

=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1

=>   x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007

=>  x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0

=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0

Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0

Nên x + 2008 = 0 <=> x = -2008

Vậy x = -2008

12 tháng 6 2018

1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)

  b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)

    <=>\(\frac{2}{3}.x=-\frac{1}{2}\)

   <=>\(x=-\frac{3}{4}\)

b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)

 <=>\(\frac{2}{5x}=\frac{29}{10}\)

 <=>\(x=\frac{29}{4}\)

c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)

<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)

<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)

<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0

<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)

<=>x=-2008

 Vậy x=-2008

Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

24 tháng 3 2019

Bài 3: 

Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)

Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)

Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)

Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))

=> a = 9.1 = 9

Ta có: x2 = 9 và y2 = 1

=> x = -3, 3

     y = -1; 1

24 tháng 3 2019

Mình làm bài 4, bài 5 làm tương tự bài 4 nhé

Biết rằng: \(\left|A\right|\ge A\)

\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)

Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Với x = 5 thì A đạt gtnn là: 4