K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

\(a=\sqrt{3+2\sqrt{2}+\sqrt{\left(\sqrt{2}-1\right)^2}}=\sqrt{3+2\sqrt{2}+\sqrt{2}-1}=\sqrt{2+3\sqrt{2}}\)

\(a^2=2+3\sqrt{2}\)

\(a^3=a^2.a=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\)

\(C=a^3\left(a^2-3\right)=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\left(2+3\sqrt{2}-3\right)\)\(=\left(2+3\sqrt{2}\right)\sqrt{2+3\sqrt{2}}\left(3\sqrt{2}-1\right)\)

lẻ quá

5 tháng 4 2017

lớp 6 học căn đâu

11 tháng 9 2023

bạn xem lại đề nhé

11 tháng 9 2023

A = i + 2i + 3i + ... + 2023i

= (2023.2024:2)i

= 2047276i

4 tháng 7 2018

\(=\sqrt{\left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}\)

\(=\sqrt{\left(2\sqrt{3}\right)^2-\left(3\sqrt{2}\right)^2}\)

\(=\sqrt{12-18}\)

\(=\sqrt{-6}\) (vô lí)

1) Thay x=16 vào A ta có:

A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)

A=\(\frac{16+4+1}{4+2}\)

A=\(\frac{21}{6}=\frac{7}{2}\)

11 tháng 3 2020

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)

NV
5 tháng 4 2022

\(\left(a^2+3b^2\right)\left(1+3\right)\ge\left(a+3b\right)^2\)

\(\Rightarrow\sqrt{a^2+3b^2}\ge\sqrt{\dfrac{\left(a+3b\right)^2}{4}}=\dfrac{a+3b}{2}\)

Tương tự:

\(\sqrt{b^2+3c^2}\ge\dfrac{b+3c}{2}\) ; \(\sqrt{c^2+3a^2}\ge\dfrac{c+3a}{2}\)

 Cộng vế \(\Rightarrow VT\ge\dfrac{4\left(a+b+c\right)}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

5 tháng 4 2022

toán lớp 6 đây á

26 tháng 2 2022

Xét hạng tổng quát:

\(\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n-1}}=\frac{\sqrt{n}-\sqrt{n-1}}{n-n+1}=\sqrt{n}-\sqrt{n-1}\)

Áp dụng vào bài, ta có:

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)

\(=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(=\sqrt{n}-1\)

9 tháng 6 2017

lớp 6 hok căn bậc 2 chi bn