\(C=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+.....+\frac{1}{7^{50}}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

Đặt A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{50}}\)

⇒7A=\(\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{51}}\)

⇒7A-A=\(\frac{1}{7^{51}}-\frac{1}{7}\)

⇒6A=\(\frac{1}{7^{51}}-\frac{1}{7}\)⇒A=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)

⇒C=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)+\(\frac{1}{6.7^{50}}\)

=\(\frac{4}{3.7^{51}}-\frac{1}{42}\)

9 tháng 3 2018

Gọi \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(49A=1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(49A+A=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)

\(50A=1-\frac{1}{7^{100}}\)

\(A=\frac{1-\frac{1}{7^{100}}}{50}< \frac{1}{50}\) ( cùng mẫu, tử bé hơn nên bé hơn ) 

Vậy \(A< \frac{1}{50}\)

Chúc bạn học tốt ~

9 tháng 3 2018

Help me!

23 tháng 7 2016

c=39/64

d=913/105

23 tháng 7 2016

3) C thiếu đề

4) \(D=\frac{1}{9}-\left|\frac{-5}{23}\right|-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{5}{23}+\frac{5}{23}-\frac{1}{9}-\frac{25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=\frac{1}{9}-\frac{1}{9}-\frac{5}{23}+\frac{5}{23}+\frac{-25}{7}+\frac{50}{4}-\frac{7}{30}\)

\(D=0+0+\frac{125}{14}-\frac{7}{30}\)

\(D=\frac{913}{105}\)

15 tháng 3 2020

Ta có : \(\left(2^2:\frac{4}{3}-\frac{1}{2}\right).\frac{6}{5}-17\)

=\(=\left(4.\frac{3}{4}-\frac{1}{2}\right).\frac{6}{5}-17\)

\(=\frac{5}{2}.\frac{6}{5}-17\)

\(=3-17=-14\)

Tụi quá mới lớp 5 thui