Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\dfrac{1}{5}\).(\(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+....+\dfrac{5}{44.49}\)).\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)
=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\).\(\dfrac{1-624}{89}\)
=\(\dfrac{1}{5}.\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\).(-7)
=\(\dfrac{1}{5}\).\(\dfrac{45}{196}\).(-7)=\(\dfrac{-9}{28}\)
Bài 1 :
Sửa để : \(N=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+....+\dfrac{1}{44.49}\right)\cdot\dfrac{1-3-5-7-..-49}{89}\)
\(N=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-\left(3+5+7+..+49\right)}{89}\)
\(N=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-624}{89}\)
\(N=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{-623}{89}\)
\(\Rightarrow N=\dfrac{9}{196}\cdot-7=\dfrac{-9}{28}\)
Đặt \(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right).\dfrac{1-3-5-7-...-49}{89}\)
\(=\dfrac{9}{196}.\dfrac{1-3-5-7-...-49}{89}\)
Đặt \(B=1-3-5-7-..-49\)
\(=1-\left(3+5+7+...+49\right)\)
\(=1-\left\{\left(49+3\right).\left[\left(49-3\right):2+1\right]:2\right\}\)
\(=1-624\)
\(=-623\)
\(\Rightarrow\dfrac{9}{196}.\left(\dfrac{-623}{89}\right)=-\dfrac{9}{28}\)
Vậy: \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-49}{89}=-\dfrac{9}{28}\)
Xét \(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{44.49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\)
=\(\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\)
=\(\dfrac{1}{5}.\dfrac{45}{196}\)
=\(\dfrac{9}{196}\)
Xét \(\dfrac{1-3-5-7-..-49}{89}\)
=\(\dfrac{1-\left(3+5+7+...+49\right)}{89}\)
CT tính sl số hạng (số cuối - số đầu ):2+1
số lượng số hạn của dãy 3+5+7+...+49 là (49-3):2+1=24
Áp dụng CT tính tổng số hạng dãy số cách đều Tổng = [ (số đầu + số cuối) x Số lượng số hạng ] : 2
=> tổng = [(3+49).24]:2=624
=>\(\dfrac{1-624}{89}\)
=\(\dfrac{-623}{89}\)
=-7
từ đó ta có \(\dfrac{9}{196}.\left(-7\right)=\dfrac{-9}{28}\)
Ta có: \(A=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{5}{14\cdot19}+...+\dfrac{5}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\left(\dfrac{49-4}{4\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{1}{5}\cdot\dfrac{45}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{1-3-5-7-...-49}{89}\)
\(\Leftrightarrow A=\dfrac{9}{196}\cdot\dfrac{-623}{89}=-\dfrac{9}{28}\)
\(\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right)\)
\(=\) \(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{44}-\dfrac{1}{49}\)
\(=\) \(\dfrac{1}{4}-\dfrac{1}{49}\)
\(=\) \(\dfrac{49}{196}-\dfrac{4}{196}\)
\(=\) \(\dfrac{45}{196}\)
Biểu thức ban đầu không thỏa công thức nên không giải như vậy đc => sai.
a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)
c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
=1/4+3/4
=1
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)