\(^{2^2+2^3}\)+.....+\(2^{2016}\)

  Trình b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Mình ko bít có đúng ko nên sai đừng trách mình nhé !

\(A=\frac{7^{2011}+1}{7^{2013}+1}\)

\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)

\(B=\frac{7^{2013}+1}{7^{2015}+1}\)

\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\) 

 \(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)​​\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)

\(Vậy\) \(A>B\)

11 tháng 8 2018

Bài 2 nè

ta xét B trước:

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)

   =\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)

\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)

vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)

\(=1\)

14 tháng 1 2018

Ta có:-2/4=x/10=>4.x=-2.10=>4.x=-20=>x=-20:4=>x=-5

Thay x=-5 ta có:-5/10=-7/y=>10.(-7)=y.(-5)=>y.(-5)=-70=>y=-70:(-5)=>y=14

Thay y=14 ta có:-7/14=z/-24=>14.z=-24.(-7)=>14.z=168=>z=168:14=>z=12

Vậy x=-5;y=14;z=12

Đúng 100% luôn nha!

           

30 tháng 6 2020

$M=(\frac{1}{x+1}+\frac{2}{1-x}+\frac{x}{x^2-1})\div \frac{1}{x+1}\\=-\frac{3}{(x-1)(x+1)}\times (x+1)\\=-\ ...

a )\(\frac{13}{15}+\frac{4}{7}-\frac{101}{105}\)

\(=\frac{91}{105}+\frac{60}{105}-\frac{101}{105}\)

\(=\frac{50}{105}\)

\(=\frac{10}{21}\)

b ) \(\frac{2}{5}+\frac{3}{5}\cdot\frac{4}{5}\)

\(=\frac{2}{5}+\frac{12}{25}\)

\(=\frac{10}{25}+\frac{12}{25}\)

\(=\frac{22}{25}\)

c )\(\frac{254\cdot399-145}{254+399\cdot253}\)

\(=\frac{253\cdot399+399-145}{254+399\cdot253}\)

\(=\frac{253\cdot399+254}{254+399\cdot253}\)

\(=1\)

d )\(\frac{5932+6001\cdot5931}{5932\cdot6001-69}\)

\(=\frac{5932+6001\cdot5931}{5931\cdot6001+6001-69}\)

\(=\frac{5932+6001\cdot5931}{5931\cdot6001+5932}\)

\(=1\)

e )\(\frac{1}{5}\div\frac{2}{7}\)

\(=\frac{1}{5}\cdot\frac{7}{2}\)

\(=\frac{7}{10}\)

hok tốt nha

22 tháng 1 2017

= 1.2.3.....99/2.3.4....100

=1/100

k mk nha đáp án đúng đó

22 tháng 1 2017

Mik tính được 1/100

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )

 
19 tháng 4 2017

Ta có :

\(A=\frac{2016^{2016}+2}{2016^{2016}-1}=\frac{\left(2016^{2016}-1\right)+3}{2016^{2016}-1}=1+\frac{3}{2016^{2016}-1}\)

\(B=\frac{2016^{2016}}{2016^{2016}-3}=\frac{\left(2016^{2016}-3\right)+3}{2016^{2016}-3}=1+\frac{3}{2016^{2016}-3}\)

Vì \(2016^{2016}-1>2016^{2016}-3\) nên \(\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)

\(\Rightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)

\(\Rightarrow A< B\)

Ta có: \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=1-\frac{1}{10}\)

\(B=\frac{10}{10}-\frac{1}{10}\)

\(B=\frac{9}{10}\)

Vậy: \(B=\frac{9}{10}\)

21 tháng 4 2017

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(B=1-\frac{1}{10}\)

\(B=\frac{9}{10}\)

Vì \(\frac{9}{10}< 1\)nên B < 1

Vậy B < 1

23 tháng 9 2016

\(A=1+3+3^2+...+3^{2016}\)

\(3A=3.\left(1+3+3^2+...+3^{2016}\right)\)

\(3A=3+3^2+3^3+...+3^{2017}\)

\(3A-A=\left(3+3^2+3^3+...+3^{2017}\right)-\left(1+3+3^2+...+3^{2016}\right)\)

\(2A=3^{2017}-1\)

\(A=\left(3^{2017}-1\right):2\)

\(B=1+6+6^2+...+6^{200}\)

\(6B=6.\left(1+6+6^2+...+6^{200}\right)\)

\(6B=6+6^2+6^3+...+6^{201}\)

\(6B-B=\left(6+6^2+6^3+...+3^{201}\right)-\left(1+6+6^2+...+6^{200}\right)\)

\(5B=6^{201}-1\)

\(B=\left(6^{201}-1\right):5\)

23 tháng 9 2016

\(3^{x-2}.4=324\)

\(3^{x-2}=324:4\)

\(3^{x-2}=81\)

\(3^{x-2}=3^4\)

\(x-2=4\)

\(x=4+2\)

\(x=6\)

\(2x< 20\)

\(\Rightarrow x=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)