Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(A=\sqrt{49}-2\sqrt{36}+3\sqrt{4}\)
\(A=7-2.6+3.2\)
\(A=7-12+6\)
\(A=1\)
\(b)\) \(B=\frac{1}{2}\sqrt{\frac{144}{225}}-7\sqrt{100}+4\sqrt{\frac{361}{400}}\)
\(B=\frac{1}{2}.\frac{4}{5}-7.10+4.\frac{19}{20}\)
\(B=\frac{2}{5}-70+\frac{19}{5}\)
\(B=\frac{-329}{5}\)
Chúc bạn học tốt ~
a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(=\sqrt{16\cdot25}+\sqrt{196:49}\)
\(=20+2=22\)
b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)
\(=36:\sqrt{324}-\sqrt{169}\)
\(=36:18-13=2-13=-11\)
c) \(\sqrt{\sqrt{81}}\)
\(=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}\)
\(=\sqrt{9+16}=\sqrt{25}=5\)
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)
\(=4.5+14:7\)
\(=20+2=22\)
b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)
\(=36:18-13=-11\)
c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)
~ ~ ~
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\)
\(=\sqrt{\dfrac{37}{4}-\sqrt{\left(3\sqrt{5}+2\right)^2}}\)
\(=\sqrt{\dfrac{29}{4}-3\sqrt{5}}\)
\(=\sqrt{\dfrac{29-12\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(2\sqrt{5}-3\right)^2}{4}}\)
\(=\dfrac{\sqrt{5}}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}\left(\sqrt{5}-\dfrac{3}{2}\right)\)
\(>\sqrt{5}-\dfrac{3}{2}=B\)
~ ~ ~
\(C=\dfrac{16\sqrt{36}-20\sqrt{48}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-80\sqrt{3}+10\sqrt{3}}{\sqrt{12}}\)
\(=\dfrac{96-70\sqrt{3}}{2\sqrt{3}}\)
\(=16\sqrt{3}-35\)
\(>16\sqrt{3}-36=B\)
~ ~ ~
Bài 1 :
Câu a : \(\sqrt{\dfrac{1,44}{3,61}}=\sqrt{\dfrac{144}{361}}=\dfrac{\sqrt{144}}{\sqrt{361}}=\dfrac{12}{19}\)
Câu b : \(\sqrt{\dfrac{0,25}{9}}=\sqrt{\dfrac{25}{900}}=\dfrac{\sqrt{25}}{\sqrt{900}}=\dfrac{5}{30}=\dfrac{1}{6}\)
Câu c : \(\sqrt{1\dfrac{13}{36}}.\sqrt{3\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}.\sqrt{\dfrac{121}{46}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{121}}{36}=\dfrac{7}{6}.\dfrac{11}{6}=\dfrac{77}{36}\)
Câu d : \(\sqrt{\dfrac{1}{121}.3\dfrac{6}{25}}=\sqrt{\dfrac{1}{121}.\dfrac{81}{25}}=\dfrac{1}{\sqrt{121}}.\dfrac{\sqrt{81}}{\sqrt{25}}=\dfrac{1}{11}.\dfrac{9}{5}=\dfrac{9}{55}\)
Câu e : \(\sqrt{1\dfrac{13}{36}.2\dfrac{2}{49}.2\dfrac{7}{9}}=\sqrt{\dfrac{49}{36}.\dfrac{100}{49}.\dfrac{25}{9}}=\dfrac{\sqrt{49}}{\sqrt{36}}.\dfrac{\sqrt{100}}{\sqrt{49}}.\dfrac{\sqrt{25}}{\sqrt{9}}=\dfrac{7}{6}.\dfrac{10}{7}.\dfrac{5}{3}=\dfrac{25}{9}\)
Bài 2 :
Câu a : \(\dfrac{\sqrt{245}}{\sqrt{5}}=\sqrt{\dfrac{245}{5}}=\sqrt{49}=7\)
Câu b : \(\dfrac{\sqrt{3}}{\sqrt{75}}=\sqrt{\dfrac{3}{75}}=\sqrt{\dfrac{1}{25}}=\dfrac{1}{5}\)
Câu c : \(\dfrac{\sqrt{10,8}}{\sqrt{0,3}}=\sqrt{\dfrac{10,8}{0,3}}=\sqrt{\dfrac{108}{3}}=\sqrt{36}=6\)
Câu d : \(\dfrac{\sqrt{6,5}}{\sqrt{58,5}}=\sqrt{\dfrac{6,5}{58,5}}=\sqrt{\dfrac{65}{585}}=\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\)
Đặt \(A=\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
\(B=\sqrt{x^2-6x+64}-\sqrt{x^2-6x+36}\)
\(\Rightarrow A.B=\left(x^2-6x+64\right)-\left(x^2-6x+36\right)=28\)
mà \(A=18\Rightarrow B=\frac{28}{18}=\frac{14}{9}\)
a) \(\sqrt{36}.\sqrt{121}+\sqrt[3]{-64}-\sqrt[3]{125}\)
\(=6.11+\left(-4\right)-5=66-9=57\)
b) \(\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}-30\sqrt{\frac{3}{25}}\)
\(=\sqrt{25.3}+\left|\sqrt{3}-2\right|-30.\frac{\sqrt{3}}{\sqrt{25}}\)
\(=5\sqrt{3}+2-\sqrt{3}-30.\frac{\sqrt{3}}{5}\)
\(=5\sqrt{3}+2-\sqrt{3}-6\sqrt{3}=2-2\sqrt{3}\)
c) \(\sqrt{11-4\sqrt{7}}-\frac{12}{1+\sqrt{7}}=\sqrt{7-4\sqrt{7}+4}-\frac{12}{1+\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\frac{12}{1+\sqrt{7}}=\left|\sqrt{7}-2\right|-\frac{12}{1+\sqrt{7}}\)
\(=\left(\sqrt{7}-2\right)-\frac{12}{\sqrt{7}+1}=\frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+1\right)}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}\)
\(=\frac{5-\sqrt{7}}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}=\frac{-7-\sqrt{7}}{\sqrt{7}+1}\)
\(=\frac{-\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=-\sqrt{7}\)