\(B=\left[\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(A=\left[\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right]:\)\(\frac{1124.2247-1124+1}{1123.2247+1123+1}\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right):\frac{1224.\left(2247-1\right)+1}{1223.\left(2247+1\right)-1}\)

\(A=5^3.\frac{2}{5}:1\)

\(A=5^2.2\)

\(A=50\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

2 tháng 9 2020

Mấy câu như này tách ra kiểu gì?

2 tháng 9 2020

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)

\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

25 tháng 9 2018

a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)

\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)

\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)

\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)

\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)

\(=\frac{2-\frac{3}{4}}{4}\)

\(=\frac{1}{2.4}\)

\(=\frac{1}{8}\)

b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)

\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)

\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)

\(=\frac{16056050}{8028025}\)

= 2

11 tháng 8 2017

a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)

\(\frac{-78}{143}+\frac{7}{22}\)\(\frac{-6}{11}+\frac{7}{22}\)\(\frac{-12}{22}+\frac{7}{22}\)

\(\frac{-5}{22}\)

b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)\(\frac{-4}{5}-\frac{221}{170}\)

\(\frac{-4}{5}-\frac{13}{10}\)\(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)

2 tháng 8 2017

2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28

dễ thấy m \(\ne\)n , ta xét 2 trường hợp :

a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9

b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn

Vậy n = 8 , m = 9 là đáp số bài trên

2 tháng 8 2017

đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)

\(\Rightarrow A< \frac{3}{4}\)

4 tháng 8 2019

a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

4 tháng 8 2019

\(a,25^3:5^2\)

=\(\left(5^2\right)^3:5^2\)

=\(5^6:5^2\)

=\(5^4\)

\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)

\(=\left(\frac{3}{7}\right)^9\)

\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

=\(3-1+\frac{1}{4}:2\)

\(=2+\frac{1}{4}\cdot\frac{1}{2}\)

\(=2+\frac{1}{8}\)

\(=\frac{17}{8}\)

\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)

\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)

\(=-\frac{14}{5}\cdot\frac{11}{16}\)

\(=-\frac{77}{40}\)

\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)

\(=\frac{2}{3}-\frac{1}{5}\)

\(=\frac{7}{15}\)