\(\frac{1}{2}\)-1).(\(\frac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=\frac{1}{2}\cdot\frac{98}{99}-\frac{1}{2}\cdot\frac{49}{100}\)

\(=\frac{1}{2}\left(\frac{98}{99}-\frac{49}{100}\right)=\frac{1}{2}\cdot\frac{4949}{9900}=\frac{4949}{19800}\)

10 tháng 9 2020

giúp mik vs, mik bik các pạn giờ này đang ngủ rùi nhưng giúp mik lần này thui.yêu các pạn nhìu

12 tháng 9 2020

\(5\frac{1}{2}+\left(-3\right)=\frac{11}{2}+\frac{-3}{1}\)\(=\frac{11}{2}+\frac{-6}{2}=\frac{5}{2}\)\(;\)

\(4\frac{9}{11}+\left(-2\frac{1}{11}\right)=\frac{53}{11}+\frac{-23}{11}\)\(=\frac{30}{11}\)\(;\)

\(2\frac{1}{2}+\left(-6\right)=\frac{5}{2}+\frac{-6}{1}\)\(=\frac{5}{2}+\frac{-12}{2}=\frac{-7}{2}\)\(;\)

\(\left(-\frac{4}{5}\right)+\frac{1}{2}=\frac{-4}{5}+\frac{1}{2}\)\(=\frac{-8}{10}+\frac{5}{10}=\frac{-3}{10}\)\(;\)

\(4,3-\left(-1,2\right)=4,3+1,2=5,5\)\(=\frac{55}{10}=\frac{11}{2}\)\(;\)

\(0-\left(-0,4\right)=0+0,4=0,4\)\(=\frac{4}{10}=\frac{2}{5}\)\(;\)

\(\frac{-2}{3}-\frac{-1}{3}=\frac{-2}{3}+\frac{1}{3}=\frac{-1}{3}\)\(;\)

\(\frac{-1}{2}-\frac{-1}{6}=\frac{-1}{2}+\frac{1}{6}\)\(=\frac{-3}{6}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}\)\(;\)

\(x+\frac{1}{3}=\frac{3}{4}\)                                \(;\)               \(x-\frac{2}{5}=\frac{5}{7}\)            \(;\)      

    \(x=\frac{3}{4}-\frac{1}{3}\)                                                             \(x=\frac{5}{7}+\frac{2}{5}\)

    \(x=\frac{5}{12}\)                                                                        \(x=\frac{39}{35}\)

\(-x-\frac{2}{3}=-\frac{6}{7}\)                                \(;\)               \(\frac{4}{7}-x=\frac{1}{3}\)

 \(\frac{6}{7}-\frac{2}{3}=x\)                                                          \(\frac{4}{7}-\frac{1}{3}=x\)

            \(\frac{4}{21}=x\) \(\Leftrightarrow\)\(x=\frac{4}{21}\)                                                       \(\frac{5}{21}=x\)\(\Leftrightarrow\)\(x=\frac{5}{12}\)

22 tháng 9 2018

a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)

\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)

\(\Rightarrow x\left(1+2y\right)=6\)

\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

ta có bảng :

x-11-22-33-66
1+2y-66-33-22-11
yloạiloại2-1loạiloại10

vậy_

phần b tương tự

4 tháng 10 2021

a) \(\left(-\frac{2}{3}\right)^2:\frac{1}{3}-\left|-1\frac{1}{2}\right|=\frac{4}{9}:\frac{1}{3}-\frac{3}{2}=\frac{4}{3}-\frac{3}{2}=-\frac{1}{6}\)

b) \(\left(\frac{1}{2}-\frac{3}{5}\right)^2+\frac{2}{3}\left|\frac{3}{4}-\frac{1}{2}\right|+2012^0=\left(-\frac{1}{10}\right)^2+\frac{2}{3},\frac{1}{4}+2012^0\)

\(=\frac{1}{100}+\frac{1}{6}+1=\frac{353}{300}\)

c) \(\left(3^2:\frac{1}{3}\right)+2^3+\frac{1}{2}+\frac{1}{4}-6=3^3+2^3+\frac{3}{4}-6=29\frac{3}{4}\)

23 tháng 5 2020

hầy :)) bạn chăm chỉ gõ đống latex này thiệt :vv

23 tháng 5 2020

cảm ơn bạn

10 tháng 7 2017

Ta có : \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{99}}\)

\(\Rightarrow3A-A=1-\frac{1}{3^{100}}\)

\(\Rightarrow2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)