K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Gọi \(1+2+2^2+2^3+...+2^{2008}\) là D.

Ta có:

\(D=1+2+2^2+2^3+...+2^{2008}\)

\(2D=2+2^2+2^3+2^4...+2^{2009}\)

\(2D-D=\left(2+2^2+2^3+2^4...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)\(D=2^{2009}-1\)

\(B=\dfrac{2^{2009}-1}{1-2^{2009}}\\ =\dfrac{\left(-1\right)\cdot\left(1-2^{2009}\right)}{1-2^{2009}}\\ =-1\)

6 tháng 4 2017

ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)

B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)

ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)

vậy A<B

NV
28 tháng 4 2021

Đặt \(C=1+2+2^2+...+2^{2007}+2^{2008}\)

\(\Rightarrow2C=2+2^2+2^3+...+2^{2008}+2^{2009}\)

\(\Rightarrow2C-C=2^{2009}-1\)

\(\Rightarrow C=2^{2009}-1\)

\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)

Giải:

B=1+2+22+23+...+22008/1-22009

Ta gọi phần tử là A, ta có:

A=1+2+22+23+...+22008

2A=2+22+23+24+...+22009

2A-A=(2+22+23+24+...+22009)-(1+2+22+23+...+22008)

A=22009-1

Vậy B=22009-1/1-22009

Chúc bạn học tốt!

26 tháng 5 2018

1.

\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

cứ làm như vậy ta được :

\(=1+1=2\)

26 tháng 5 2018

2. Ta có :

\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)

vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\)\(\frac{2009}{2010}>\frac{2009}{2009+2010}\)

\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)

10 tháng 5 2016

Đặt A=1+2+22+23+...+22008

=>2A=2+22+23+24+...+22009

=>2A-A=A=(2+22+23+24+...+22009)-(1+2+22+23+...+22008)

=22009-1

Suy ra:\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}=\frac{2^{2009}-1}{1-2^{2009}}=\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)

27 tháng 4 2016

2B=2+2^2+2^3+......+22009

2B-B=22009-1

27 tháng 4 2016

2B=2+2^2+2^3+......+22009

2B-B=22009-1

B

8 tháng 3 2022

\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)

\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)

B=-1

22 tháng 4 2021

ta có:

2B = 2 + 2^2 +...+ 2^2009 / 1 - 2^2009

2B - B = (2 + 2^2 +...+ 2^2009)-(1 + 2 +...+ 2^2008) / 1 - 2^2009

B = 2^2009 - 1 / 1 - 2^2009

B = -(2^2009 - 1) / 1 - 2^2009    * (-1)

B = 1 * (-1)

B = -1

8 tháng 5 2022

\(=\dfrac{2\left(1+2+2^2+...+2^{2008}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)

\(=\dfrac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)}{1-2^{2009}}\)

\(=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

8 tháng 5 2022

cảm ơn bạn nha

ok