K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Theo bảng hằng đẳng thức ta có :

( a + b )3

= a3 + 3a2b + 3ab2 + b3

=> Phép tính :

( 6 + 3 )3

= 63 + 3.623 + 3.6.32 + 33

= 216 + 3.36.3 + 3.6.9 + 27

= 216 + 324 + 162 + 27

= 540 + 162 + 27

= 702 + 27

= 729

4 tháng 9 2020

Cám ơn b rất nhiều

NV
4 tháng 9 2020

\(D=2\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)-3\left(sin^4x+cos^4x\right)\)

\(=2\left(sin^4x+cos^4x\right)-2sin^2x.cos^2x-3\left(sin^4x+cos^4x\right)\)

\(=-\left(sin^4x+2sin^2x.cos^2x+cos^4x\right)\)

\(=-\left(sin^2x+cos^2x\right)^2=-1\)

31 tháng 7 2018

b, <=>(4x)3+13 

<=> (4x+1)( 16x2-4x+1)

c, <=> (x.y2.z3)3-53

<=> (xy2z3-5)( x2y4z6+5xy2z3+25)

d, <=> (3x2)3-(2x)3

<=> (3x2-2x)(9x4+6x3+4x2)

d, (x3)2- (y3)2 

= (x3+y3)(x3-y3)

a: \(A=\left(a^2-9\right)\left(a^2+9\right)=a^4-81\)

b: \(=\left(a^2-25\right)\left(a+5\right)\)

\(=a^3+5a^2-25a-125\)

 

1 tháng 10 2019

\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)

\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)

=> dpcm

2 tháng 10 2019

Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)

\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)

\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)

Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)

\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)

\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)

\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)

\(=9+x^2+y^2+z^2\)

Áp dụng BĐT Cauchy cho 3 số:

\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)

\(\Rightarrow9+x^2+y^2+z^2\ge12\)

hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)

\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)

17 tháng 10 2017

x4 + y4 + (x + y)4 = x4 + y4 + x4 + 4x3y + 6x2y2 + 4xy3 + y4

= 2x4 + 2y4 + 4x2y2 + 4x3y + 4xy3 + 2x2y2

= 2(x4 + y4 + 2x2y2) + 4xy(x2 + y2) + 2x2y2

= 2(x2 + y2)2 + 4xy(x2 + y2) + 2x2y2

= \(2\left [ (x^{2} + y^{2}) + 2xy(x^{2} + y^{2}) + x^{2}y^{2} \right ]\)

= 2(x2 + xy + y2)2 (đpcm)

10 tháng 9 2019

\(4t^2+20t+x=0\)

\(\Leftrightarrow\left(2t\right)^2+2.2t.5+x=0\)

Vậy x = \(5^2=25\)

24 tháng 7 2019

\(a,19^2=\left(18+1\right)^2=18^2+2.18.1+1^2=324+36+1=361\)

\(28^2=\left(27+1\right)^2=27^2+2.27.1+1^2=729+54+1=784\)

\(81^2=\left(80+1\right)^2=80^2+2.80.1+1^2=6400+160+1=6561\)

\(91^2=\left(90+1\right)^2=90^2+2.90.1+1^2=8100+180+1=8281\)

\(b,19.21=\left(20-1\right)\left(20+1\right)=20^2-1^2=400-1=399\)

\(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)

\(39.41=\left(40-1\right)\left(40+1\right)=40^2-1^2=1600-1=1599\)

\(c,28^2-8^2=\left(28-8\right)\left(28+8\right)=20.36=720\)

\(56^2-46^2=\left(56-46\right)\left(56+46\right)=10.102=1020\)

\(67^2-57^2=\left(67-57\right)\left(67+57\right)=10.124=1240\)

24 tháng 7 2019

a) \(19^2=\left(20-1\right)^2=20^2-2.20.1+1^2=400-40+1=361\)

\(28^2=\left(30-2\right)^2=30^2-2.30.2+2^2=900-120+4=784\)

\(81^2=\left(80+1\right)^2=80^2+2.80.1+1^2=6400+160+1=6561\)

\(91^2=\left(90+1\right)^2=90^2+2.90.1+1^2=8100+180+1=8281\)

24 tháng 7 2017

a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)

\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)

th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)

\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)

vậy \(x=\dfrac{-1}{3};x=7\)

b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)

\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)

\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)

th1: \(2-x\ge0\Leftrightarrow x\le2\)

\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)

\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)

th2: \(2-x< 0\Leftrightarrow x>2\)

\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)

\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

vậy \(x=-\sqrt{7};x=3\)

24 tháng 7 2017

a) \(\sqrt{9-12x+4x^2}=4+x\)

\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)

Vậy \(x_1=-\dfrac{1}{3};x_2=7\).

b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)

\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)

\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)

Vậy \(x_1=-\sqrt{7};x_2=3\).