K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2022

Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$

$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$

$=1-\frac{1}{21}=\frac{20}{21}$

$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$

31 tháng 12 2022

14,26651106

27 tháng 10 2020

sửa đề câu a  và câu b  nhá  , mik nghĩ đề như này :

  \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

 \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(\frac{1}{1}-\frac{1}{215}\)

\(=\frac{214}{215}\)

b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)

    \(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)

\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)

\(A\cdot2=\frac{214}{215}\)

\(A=\frac{214}{215}:2\)

\(A=\frac{107}{215}\)

27 tháng 10 2020

@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều

27 tháng 5 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{2}.\frac{8}{9}\)

\(=\frac{4}{9}\)

27 tháng 5 2019

#)Giải :

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)

\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)

\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)

\(\Rightarrow2S=1-\frac{1}{9}=\frac{8}{9}\)

\(S=\frac{8}{9}:2=\frac{4}{9}\)

             #~Will~be~Pens~#

11 tháng 5 2015

\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)

                                                    \(=1-\frac{1}{21}=\frac{20}{21}\)

đúng cái nhé

2 tháng 11 2019

\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+..+\frac{1}{9.11}\right)\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...-\frac{1}{11}\right)\)

\(=2.\left(1-\frac{1}{11}\right)\)

\(=2.\left(\frac{11}{11}-\frac{1}{11}\right)\)

\(=2.\frac{10}{11}\)

\(=\frac{20}{11}\)

4 tháng 3 2018

\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+..........+\frac{1}{97x99}\)

\(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-........-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)

\(1-\frac{1}{3}-\frac{1}{99}\)

\(\frac{99}{99}-\frac{33}{99}-\frac{1}{99}\)

\(\frac{65}{99}\)

4 tháng 3 2018

\(\frac{1}{3}\)*5+\(\frac{1}{5}\)*7+\(\frac{1}{7}\)*9*...*\(\frac{1}{97}\)*99

=\(\frac{5}{3}\)*\(\frac{7}{5}\)*\(\frac{9}{7}\)*...*\(\frac{99}{97}\)

=\(\frac{99}{3}\)

đúng thì nha

26 tháng 4 2021

a ) A = 20,15 x 25,75 + 74,25 x 20,15

     A = 20,15 x ( 25,75 + 74,25 )

     A = 20,15 x       100

     A =     2015

Tính bằng cách thuận tiện nhất 

a) A = 20,15 x 25,75 + 74,25 x 20,15

= 20,15 x (25,75 + 74,25)

= 20,15 x      100

= 2015