K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2023

A          =         1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\)+......+\(\dfrac{1}{2^{99}}\)\(\dfrac{1}{2^{100}}\)

2A        = 2 + 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\)+.....+ \(\dfrac{1}{2^{99}}\)

2A - A  =  2 - \(\dfrac{1}{2^{100}}\)

  A       = 2  - \(\dfrac{1}{2^{100}}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 8 2023

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\\ \Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)

\(\Rightarrow A-\dfrac{1}{2}A=1-\dfrac{1}{2^{101}}\\ \Rightarrow\dfrac{1}{2}A=\dfrac{2^{101}-1}{2^{101}}\\ \Rightarrow A=\dfrac{2^{201}-1}{2^{100}}\)

2 tháng 8 2023

\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)...\left(1+\dfrac{1}{99.101}\right)\)

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)

\(=\dfrac{2.3.4...100}{1.2.3.4...99}.\dfrac{2.3.4...100}{3.4.5....101}\)

\(=\dfrac{100}{1}.\dfrac{2}{101}\)

\(=\dfrac{200}{101}\)

\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)

\(=\dfrac{-5}{4}\)

10 tháng 9 2021

 có thể giải cụ thể ra giúp em đc k ạ 

 

25 tháng 12 2021

=(\(18\dfrac{1}{3}\)-\(3\dfrac{1}{3}\)).\(\dfrac{2}{5}\)

=15.\(\dfrac{2}{5}\)

=6

25 tháng 12 2021

sao lại ra 15 mà ko có \(\dfrac{1}{3}\)vậy bn

NV
21 tháng 2 2021

Áp dụng \(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{n}\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2n}=\dfrac{n+1}{2}\)

Vậy:

\(A=\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}=\dfrac{1+2+3+...+100}{2}-1\)

\(=\dfrac{100.101}{2}-1=5049\)

1 tháng 11 2023

a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{100}}\)

\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{101}}\)

\(2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^{100}}\)

\(A=1-\dfrac{1}{2^{100}}\)

b) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2023\cdot2024}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\)

\(=1-\dfrac{1}{2024}\)

\(=\dfrac{2024}{2024}-\dfrac{1}{2024}\)

\(=\dfrac{2023}{2024}\)

1 tháng 11 2023

cứu 

25 tháng 12 2023

\(Q=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\cdot...\cdot\left(1-\dfrac{1}{100^2}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{101}{200}\)

19 tháng 10 2023

\(A=\left(3-\dfrac{1}{4}+\dfrac{3}{2}\right)-\left(5+\dfrac{1}{3}-\dfrac{5}{6}\right)-\left(6-\dfrac{7}{4}+\dfrac{2}{3}\right)\\ \Rightarrow A=3-\dfrac{1}{4}+\dfrac{3}{2}-5-\dfrac{1}{3}+\dfrac{5}{6}-6+\dfrac{7}{4}-\dfrac{2}{3}\\ \Rightarrow A=\left(3-5-6\right)-\left(\dfrac{1}{4}+\dfrac{7}{4}\right)+\left(\dfrac{3}{2}+\dfrac{5}{6}-\dfrac{2}{3}\right)\\ \Rightarrow A=-8-\dfrac{3}{2}+\dfrac{5}{3}\\ =-\dfrac{47}{6}.\\ B=0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{41}\)

\(\Rightarrow B=\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{9}{10}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{1}{41}\\ \Rightarrow B=2+\dfrac{1}{41}\\ \Rightarrow B=\dfrac{83}{41}.\)

29 tháng 10 2023

-_-

20 tháng 9 2023

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)

\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)

\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)

\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)

\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\) 

Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)

\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}\)