K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2015.2016

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2015.2016.3

=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2015.2016.(2017 - 2014)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2015.2016.2017 - 2014.2015.2016

=> 3A = 2015.2016.2017

=> A = 2015.2017.672

=> A = 2 731 179 360

1 tháng 8 2018

\(=\frac{0}{1.2}+\frac{0}{2.3}+\frac{0}{3.4}+...+\frac{0}{2015.2016}\)

\(=0+0+0+...+0=0\)

14 tháng 8 2017

NẾU MÌNH CÓ VIẾT SAI ĐỀ MONG CÁC BẠN GIÚP

14 tháng 8 2017

Bạn viết đúng rồi 

22 tháng 6 2015

\(\left(\frac{7}{1.2}+\frac{7}{2.3}+\frac{7}{3.4}+...+\frac{7}{2015.2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\frac{2015}{2016}\)

=\(7\left(\frac{1}{1}-\frac{1}{2016}\right):\frac{2015}{2016}=7.\frac{2015}{2016}:\frac{2015}{2016}=7\)

22 tháng 6 2015

\(\left(\frac{7}{1\cdot2}+\frac{7}{2\cdot3}+\frac{7}{3\cdot4}+...+\frac{7}{2015\cdot2016}\right):\frac{2015}{2016}\)

\(=\left(7-\frac{7}{2}+\frac{7}{2}-\frac{7}{3}+\frac{7}{3}-\frac{7}{4}+...+\frac{7}{2015}-\frac{7}{2016}\right):\frac{2015}{2016}\)

\(=\left(7-\frac{7}{2016}\right):\frac{2015}{2016}=\frac{2015}{288}:\frac{2015}{2016}=\frac{2015}{288}\cdot\frac{2016}{2015}=\frac{2016}{288}=7\)

7 tháng 7 2017

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

28 tháng 12 2017

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

28 tháng 12 2017

tu ki ha con

24 tháng 8 2017

Bạn có ghi thiếu đề không vậy?

5 tháng 9 2017

ko

3 tháng 7 2023

\(A=2021-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}=\right)\)

\(=2021-\left(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{2022-2021}{2021.2022}\right)=\)

\(=2021-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)=\)

\(=2021-\left(1-\dfrac{1}{2022}\right)=2021-\dfrac{2021}{2022}\)

18 tháng 9 2016

S = 4/2.3 . 10/3.4 ..........9898/ 99.100

S= 1.4/2.3 . 2.5/3.4 . 3.6/4.5 .......98.101/99.100

S = (1.2.3...98).(4.5.6...100).1014/(2.3.4...98).99.(4.5.6...100).3

S=101/99.3

S=101.297