Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=-17+91-91+17+2011=\left(-17+17\right)+\left(91-91\right)+2011\)
\(=0+0+2011=2011\)
\(\dfrac{5}{7}\).\(\dfrac{-3}{11}\)-\(\dfrac{5}{7}\).\(\dfrac{8}{11}\)+1\(\dfrac{5}{7}\)
= \(\dfrac{5}{7}\).(\(\dfrac{-3}{11}\) - \(\dfrac{8}{11}\)) + 1\(\dfrac{5}{7}\)
= \(\dfrac{5}{7}\). -1 + 1\(\dfrac{5}{7}\)
= \(\dfrac{-5}{7}\) +1\(\dfrac{5}{7}\)
= -1
Ta có:\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{81.85}\)
\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{81.85}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\frac{84}{85}=\frac{21}{85}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{81.85}\)
Ta có công thức
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
\(\Rightarrow A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+..+\frac{1}{81}-\frac{1}{85}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(A=\frac{84}{340}\)
2/7 nhân 5/1/4 - 2/7 nhân 3/1/4
ai giúp mình với xin người đi mà nhớ ghé qua trả lời cho mình với huhuhuhuhu
5 k cho ai trả lời đc yêu các bạn nếu trả lời đc câu hỏi của mình
\(\frac{11}{\frac{3}{13}}-\left(\frac{2}{\frac{4}{7}}+\frac{5}{\frac{3}{13}}\right)\)
\(=11:\frac{3}{13}-\left(2:\frac{4}{7}+5:\frac{3}{13}\right)\)
\(=11.\frac{13}{3}-\left(2.\frac{7}{4}+5.\frac{13}{3}\right)\)
\(=11.\frac{13}{3}-2.\frac{7}{4}-5.\frac{13}{3}\)
\(=\frac{13}{3}.\left(11-5\right)-2.\frac{7}{4}\)
\(=\frac{13}{3}.6-\frac{7}{2}\)
\(=13.2-\frac{7}{2}\)
\(=26-\frac{7}{2}\)
\(=\frac{52}{2}-\frac{7}{2}=\frac{45}{2}\)
1) A=\(\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)=\(\dfrac{7.2}{1.3.2}+\dfrac{7.2}{3.5.2}+\dfrac{7.2}{5.7.2}+...+\dfrac{7.2}{99.101.2}\)=
\(\dfrac{7}{2}\left(\text{}\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)=
\(\dfrac{7}{2}\left(\text{}1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)=
\(\dfrac{7}{2}\left(\text{}1-\dfrac{1}{101}\right)\)=\(\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{350}{101}\)
2) A=\(\dfrac{1}{2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}\)=\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)
=\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{16}\)=\(1-\dfrac{1}{16}=\dfrac{15}{16}\)