Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5/5x10+5/10x15+5/15x20+...+5/95x100)
= (1/5-1/10+1/10-1/15+1/15-1/20+....+1/95-1/100):5
=(1/5-1/100):5
=19/500
Đặt A = 1/5x10 + 1/10x15 + 1/15x20 + 1/20x25 + ... + 1/95x100
A x 5 = 5/5x10 + 5/10x15 + 5/15x20 + 5/20x25 + ... + 5/95x100
A x 5 = 1/5 - 1/10 + 1/10 - 1/15 + 1/15 - 1/20 + 1/20 - 1/25 + ... + 1/95 - 1/100
A x 5 = 1/5 - 1/100
A x 5 = 19/100
A = 19/100 : 5
A = 19/100 x 1/5
A = 19/500
Vậy A= 19/500
a, S = 2 + 22 + 23 + ...+ 220
2S = 22 + 23 +...+ 220 + 221
2S - S = 221 - 2
S = 221 - 2
b, A = 5 + 52 + 53 +...+ 596
5A = 52 + 53 +...+ 596 + 597
5A - A = 597 - 5
4A = 597 - 5
A = \(\dfrac{5^{97}-5}{4}\)
a) A = 2 + 2² + 2³ + ... + 2¹⁰⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2¹⁰¹
⇒ A = 2A - A
= (2² + 2³ + 2⁴ + ... + 2¹⁰¹) - (2 + 2² + 2³ + ... + 2¹⁰⁰)
= 2¹⁰¹ - 2
b) B = 1 + 5 + 5² + ... + 5¹⁵⁰
⇒ 5B = 5 + 5² + 5³ + ... + 5¹⁵¹
⇒ 4B = 5B - B
= (5 + 5² + 5³ + ... + 5¹⁵¹) - (1 + 5 + 5² + ... + 5¹⁵⁰)
= 5¹⁵¹ - 1
⇒ B = (5¹⁵¹ - 1) : 4
\(\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{99.100}\)
\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\right)\)
\(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{100}\right)\)
\(=5.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5.49}{100}=\frac{49}{20}\)
5/2 . 3 + 5/3 .4+5/4 .5 +.......+5/99.100
= ( 1 / 2.3 + 1 /3.4 + 1 / 4.5 + ..... + 5 / 99. 100 ). 5
= 5 ( 1 / 2 - 1 / 3 + 1 / 3 - 1 / 4 + 1 / 4 - 1 / 5 +.... + 1 / 99 - 1 / 100 )
= 5 ( 1 / 2 - 1 / 100 )
= 5 . 49 / 100
= 49 / 20
B=5+5^2+5^3+....+5^100
5B=5^2+5^3+.....5^100+5^101
5B-B=(5+5^2+5^3+.....+5^100)-(5^2=5^3+5^4+......+5^101)
=>b=5-5^101
LẦN đầu tiên mình giải dạng này nên chưa chắc nha
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
B= 5/3 .(1-1/4+1/4-1/7+........+1/100-1/103 )
B= 5/3 . (1-1/103 )
B=5/3 .102 /103 =170 /103
Đ lm tương tự nha.......
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(3B=5\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{100.103}\right)\)
\(3B=5\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3B=5\left(1-\frac{1}{103}\right)\)
\(3B=5.\frac{102}{103}\)
\(3B=\frac{510}{103}\)
\(\Rightarrow B=\frac{170}{103}\)
\(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{36.41}\)
\(\Rightarrow D=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{36.41}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{36}-\frac{1}{41}\right)\)
\(D=5\left(1-\frac{1}{41}\right)\)
\(D=5.\frac{40}{41}\)
\(D=\frac{200}{41}\)
B = 5^2/ 10.15 + 5^2/ 15.20 +....+ 5^2/190.195 + 5^2/195.200
B= 25/10.15 + 25/15.20 +........+ 25/190.105 + 25/195.200
B= 25( 1/10.15 + 1/15.20+....+ 1/190.195+ 195/195.200
B= 5( 1/10-1/15 + 1/15-1/20+...+1/195- 1/200)
B= 5. ( 1/10 - 1/200)
B= 5.19/200
B= 19/40
Vậy..........
cảm ơn Duki ạ nhưng cho mik hỏi tại sao 25(1/10.15...) lại =5(...) còn lại mik đã hiểu mong bạn trả lời,mik cảm ơn.