Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng đồng dư
a)\(3^{4n+1}=3^{4n}.3=\left(3^4\right)^n.3=81^n.3\)
81 đồng dư với 1 (mod2)
=>81n đồng dư với 1 (mod2)
=>81n.3 đồng dư với 3 (mod2)
=>81n.3 chia 2 dư 3 hay 34n+1 ko chia hết cho 2
Tương tự 34n+1 cùng ko chia hết cho 5,10
các câu còn lại tương tự
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
\(3^{8n+2}+2^{12n+3}\)
\(=24^n\cdot9+24^n\cdot8\)
\(=24^n\cdot17⋮17\)
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
a: \(4n-5⋮n\)
\(\Leftrightarrow-5⋮n\)
hay \(n\in\left\{1;-1;5;-5\right\}\)
b: \(\Leftrightarrow n^2+3n-2n-6-7⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-2;-4;4;-10\right\}\)
c: \(\Leftrightarrow n^2-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Bài làm:
Bài 1
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\rightarrow\left(x-\frac{1}{2}\right)^2=0^2\)
\(\rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Bài 2
a) \(25^3\div5^2=\left(5^2\right)^3\div5^2=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}\div\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}\div\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}\div\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2\div2=3-1+\frac{1}{4}\times\frac{1}{2}=2+\frac{1}{8}=\frac{17}{8}\)
Bài 3
a) \(9\times3^3\times\frac{1}{81}\times3^2=3^2\times3^3\times\frac{1}{3^4}\times3^2=3^3\)
b) \(4\times2^5\div\left(2^3\times\frac{1}{16}\right)=2^2\times2^5\div\left(2^3\times\frac{1}{2^4}\right)=2^7\div\frac{1}{2}=2^6\)
c) \(3^2\times2^5\times\left(\frac{2}{3}\right)^2=3^2\times2^5\times\frac{2^2}{3^2}=3^2\times\frac{2^7}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\times\frac{1}{3}\times9^2=\left(\frac{1}{3}\right)^3\times3^4=\frac{1}{3^3}\times3^4=3^1\)