Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\cos1^o=\sin89^o\)
\(\cos2^o=sin88^o\)
................
\(\cos44^o=\sin46^o\)
\(\cos45^o=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\cos^21^o=\sin^289^o\)
\(\cos^22^o=\sin^288^o\)
....................................
\(\cos^244^o=\sin^246^o\)
\(\cos^245^o=\frac{2}{4}=\frac{1}{2}\)
Khi đó \(B=\sin^289^o+\sin^288^o+...+\sin^246^o+\cos^245^o+\cos^246^o+...+\cos^289^o\)
\(=\left(\sin^289^o+\cos^289^o\right)+\left(\sin^288^o+\cos^288^o\right)+...+\left(\sin^246^o+\cos^246^o\right)+\cos^245^o\)
\(=1+1+...+1+\frac{1}{2}\)(44 số 1)
\(=44+\frac{1}{2}=\frac{89}{2}=44,5\)
\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)
\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)
.......
\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)
\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)
b) \(sin^23^o+sin^215^o+sin^275^o+sin^287^o\)
\(=\left(sin^23^o+cos^23^o\right)+\left(sin^215^o+cos^215^o\right)\)
\(=1+1=2\)
a) \(cos^212^o+cos^278^o+cos^21^o+cos^289^o\)
\(=\left(sin^278^o+cos^278^o\right)+\left(sin^289^o+cos^289^o\right)\)
\(=1+1=2\)
Ta có : \(cos^215^o=sin^275^o;cos^225^o=sin^265^o;cos^235^o=sin^255^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(N=sin^275^o+cos^275^o-\left(sin^265^o+cos^265^o\right)+sin^255^o+cos^255^o-\left(\frac{sin^245^0+cos^245^o}{2}\right)\)
Áp dụng công thức \(sin^2a+cos^2a=1\)ta được
\(N=1-1+1-\frac{1}{2}=\frac{1}{2}\)
Vậy N = 1/2
câu b chờ chút mình làm cho nhé <33
Ta có : \(cos^21^o=sin^289^o;cos^22^o=sin^288^o;...;cos^244^o=sin^246^o;\frac{cos^245^o}{2}=\frac{sin^245^o}{2}\)
Khi đó \(A=\frac{sin^245^o+cos^245^o}{2}+\left(sin^246^0+cos^246^o\right)+...+\left(sin^289^o+cos^289^o\right)\)
Áp dụng ct \(sin^2a+cos^2a=1\)ta được \(A=\frac{1}{2}+1+1+...+1=...\)
P/S : bạn tự đếm xem bao nhiêu cặp nhé ;) tìm ssh á
4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)
\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)
Lời giải:
a) Ta có tính chất quen thuộc là nếu \(\alpha+\beta=90^0\Rightarrow \cos \alpha=\sin \beta\)(có thể thấy rất rõ khi xét một tam giác vuông)
Tức là \(\sin \beta=\cos (90-\beta)\)
Do đó:
\(A=(\sin ^22^0+\sin ^288^0)+(\sin ^24^0+\sin ^286^0)+...+(\sin ^244^0+\sin ^246^0)\)
\(=\underbrace{(\sin ^22^0+\cos ^22^0)+(\sin ^24^0+\cos ^24^0)+...+(\sin ^244^0+\cos ^244^0)}_{22\text{cặp}}\)
\(=\underbrace{1+1+...+1}_{22}=22\) (tổng 2 bình phương sin và cos của một góc thì bằng 1)
b)
\(P=1994(\sin ^6x+\cos ^6x)-2991(\sin ^4x+\cos ^4x)\)
\(=1994[(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos^2 x+\cos ^4x)]-2991(\sin ^4x+\cos ^4x)\)
\(=1994(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)-2991(\sin ^4x+\cos ^4x)\)
\(=-1994\sin ^2x\cos ^2x-997\sin ^4x-997\cos ^4x\)
\(=-997(\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x) \)
\(=-997(\sin ^2x+\cos ^2x)^2=-997\)
Do đó biểu thức không phụ thuộc vào $x$
Vì sin(\(\alpha\) ) = cos (\(90-\alpha\)) nên \(sin^2\alpha=cos^2\left(90-\alpha\right)\)
a/ \(sin^230-sin^240-sin^250+sin^260=\left(cos^260+sin^260\right)-\left(cos^250+sin^250\right)=1-1=0\)
b/ \(cos^225-cos^235+cos^245-cos^255+cos^265=\left(sin^265+cos^265\right)-\left(sin^255+cos^255\right)+cos^245=1-1+cos^245=cos^245=\dfrac{1}{2}\)