Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow S=1-2+3-4+5-6+....97-98+99\)
\(\Leftrightarrow S=-1+-1+-1+....+-1+99\)
\(\Leftrightarrow S=-49+99\)
\(\Rightarrow S=50\)
Vậy: \(S=50\)
\(S=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+....+98.99}\)
\(=\frac{1+\frac{2.3}{2}+\frac{3.4}{2}+....+\frac{98.99}{2}}{1.2+2.3+3.4+....+98.99}\)
\(=\frac{\frac{1}{2}\left(1.2+2.3+3.4+....+98.99\right)}{1.2+2.3+3.4+....+98.99}\)
\(=\frac{1}{2}\)
a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)
\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)
\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B
=>B/A=1/100
b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)
\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)
\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
=>A/B=25
Cách 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
chơi nhau ak
ngu thế