Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1+ 2 + 3 + ... + 98 + 99
số số hạng từ 1 đến 99 là : (99 - 1) : 1 + 1 = 99
=) B = (99+1) . 99 : 2 = 4950
vậy B = 4950
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)
Số các số hạng là : ( 99 - 1 ) : 1 +1 = 99 ( số )
Tổng là : ( 99 + 1 ) . 99 : 2 = 4950
Vậy, B = 4950
số số hạng của B là :
( 99 - 1 ) : 1 + 1 = 99 ( số )
tổng B là :
( 99 + 1 ) . 99 : 2 = 4950
Vậy ...
=1.4.2.5.....98.101/2.3.3.4.....99.100
=(1.2.3.....97.98)(4.5.....100.101)/(2.3.....99)(3.4.....100)
=1.101/99.3
=101/297
Bạn tuấn anh có thể giải thích rõ cho mik vì sao bạn có thể ra dược bước 1ko?
Mình giải bừa :v
\(\frac{1}{99}-\frac{1}{98.99}-\frac{1}{97.98}-...-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{97.98}-\frac{1}{98.99}-\frac{1}{99}\right)\)
\(=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}-\frac{1}{99}\right)\)
\(=-\left(1-\frac{1}{99}-\frac{1}{99}\right)\)
\(=-\frac{97}{99}\)
Hi vọng đúng :v
Phân tích mẫu sau ta có :
\(\frac{99}{1}+\frac{98}{2}=+\frac{1}{99}+........=98+\frac{2}{1}+97+\frac{2}{1}\)
\(=>\left(1+99+1.....\right)+99+1\)
Vì ta bỏ phần tử đi nên cộng 1 vào phân số 99 do thế 99 vẫn đẳng thức được
\(\frac{100}{2}+\frac{100}{3}+.......\frac{100}{99}=100.\frac{1}{2}+\frac{1}{3}+....\frac{1}{99}\)
Do đó Đáp án sẽ là
=>\(100\)
(Bạn nên nhớ là ta cộng một lần nữa nhé)
~Hk tốt~
Ta có:
\(1-\frac{1}{1+2}=1-\frac{1}{2.3:2}=1-\frac{2}{6}=\frac{4}{6}=\frac{1.4}{2.3}\)
\(1-\frac{1}{1+2+3}=1-\frac{1}{3.4:2}=1-\frac{2}{12}=\frac{10}{12}=\frac{2.5}{3.4}\)
\(1-\frac{1}{1+2+3+4}=1-\frac{1}{4.5:2}=1-\frac{2}{20}=\frac{18}{20}=\frac{3.6}{4.5}...\)
\(1-\frac{1}{1+2+3+...+2006}=1-\frac{1}{2006.2007:2}=1-\frac{2}{2006.2007}=\frac{2005.2008}{2006.2007}\)
\(\Rightarrow1-\left(\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{2005.2008}{2006.2007}\)
\(=\frac{\left(1.2.3....2005\right).\left(4.5.6....2008\right)}{\left(2.3.4....2005\right).\left(3.4.5....2007\right)}=\frac{1}{2006}.\frac{2008}{3}=\frac{2008}{6018}\)
B= (99+1) . 99 : 2= 4950
\(B=1+2+3+...+98+99\)
\(\Rightarrow B=\frac{\left(99+1\right)\left[\left(99-1\right):1+1\right]}{2}\)
\(\Rightarrow B=\frac{100.99}{2}\)
\(\Rightarrow B=4950\)