\(\tan^2\alpha+\sin^2\alpha-\cot\)(90o-α)-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2020

\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)

\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)

\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)

\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)

Câu cuối đề bài sai

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) \(\cot ^2a+1=\left(\frac{\cos a}{\sin a}\right)^2+1=\frac{\cos ^2a+\sin ^2a}{\sin ^2a}=\frac{1}{\sin ^2a}\)

b)

\(\tan ^2a+1=\left(\frac{\sin a}{\cos a}\right)^2+1=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}=\frac{1}{\cos ^2a}\)

c) Đề bài sai.

\(\sin ^4a+\cos ^2a=\sin ^2a.\sin ^2a+\cos ^2a\)

\(=\sin ^2a(1-\cos ^2a)+\cos ^2a\)

\(\sin ^2a+\cos ^2a-\sin ^2a\cos ^2a=1-\sin ^2a\cos ^2a\)

d)

\(\frac{1-4\sin ^2a\cos ^2a}{(\sin a+\cos a)^2}=\frac{1-(2\sin a\cos a)^2}{\sin ^2a+2\sin a\cos a+\cos ^2a}=\frac{(1-2\sin a\cos a)(1+2\sin a\cos a)}{1+2\sin a\cos a}\)

\(=1-2\sin a\cos a\)

e) ĐK tồn tại tan là $\cos x\neq 0$

\(\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\tan a\cos a\)

Ta có:

\(\frac{2\sin a\cos a-1}{\cos ^2a-\sin ^2a}=\frac{1-2\sin a\cos a}{\sin ^2a-\cos ^2a}=\frac{\cos ^2a+\sin ^2a-2\sin a\cos a}{(\sin a-\cos a)(\sin a+\cos a)}\)

\(=\frac{(\sin a-\cos a)^2}{(\sin a-\cos a)(\sin a+\cos a)}=\frac{\sin a-\cos a}{\sin a+\cos a}\)

\(=\frac{\tan a\cos a-\cos a}{\tan a\cos a+\cos a}=\frac{\cos a(\tan a-1)}{\cos a(\tan a+1)}\)\(=\frac{\tan a-1}{\tan a+1}\) (đpcm)

a: Sửa đề: \(A=sin^2a+sin^2a\cdot tan^2a\)

\(=sin^2a\left(1+tan^2a\right)=sin^2a\cdot\dfrac{1}{cos^2a}=tan^2a\)

b: \(=\dfrac{\left(sina+cosa\right)^2}{sina+cosa}-cosa=sina+cosa-cosa=sina\)

c: \(=\dfrac{cosa+cos^2a+sina}{1+cosa}\)

28 tháng 9 2018

a) \(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b) \(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) \(tan^2\alpha\left(2sin^2\alpha+3cos^2\alpha-2\right)=tan^2\alpha\left[cos^2\alpha+2\left(sin^2\alpha+cos^2\alpha\right)-2\right]=\dfrac{sin^2\alpha}{cos^2\alpha}\times cos^2\alpha=sin^2\alpha\)

28 tháng 9 2018

a)

\(1+tan^2\alpha=1+\left(\dfrac{sin\alpha}{cos\alpha}\right)^2=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\)

b)\(1+cot^2\alpha=1+\left(\dfrac{cos\alpha}{sin\alpha}\right)^2=\dfrac{sin^2\alpha+cos^2\alpha}{sin^2\alpha}=\dfrac{1}{sin^2\alpha}\)

c) mình chưa rõ đề nha

29 tháng 6 2017

Đúng

Sai

Đúng

Sai

3 tháng 9 2016

a/\(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha=\left(sin^2\alpha+cos^2\alpha\right)^2=1\)

b/ \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)=\frac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)

c/ \(cos^2\alpha+tan^2\alpha.cos^2\alpha=cos^2\alpha\left(1+tan^2\alpha\right)\)

\(=cos^2\alpha.\left(1+\frac{sin^2\alpha}{cos^2\alpha}\right)=cos^2\alpha.\left(\frac{sin^2\alpha+cos^2\alpha}{cos^2\alpha}\right)\)

\(=cos^2.\frac{1}{cos^2\alpha}=1\)