Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3=6+3x\sqrt[3]{\left(3+\sqrt{\frac{368}{27}}\right)\left(3-\sqrt{\frac{368}{27}}\right)}\Leftrightarrow x^3=6+3x.\sqrt[3]{9-\frac{368}{27}}\Leftrightarrow x^3+5x-6=0\)
Tự làm tiếp nha
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(\sqrt{3\cdot27}-\sqrt{\dfrac{144}{36}}\)=\(\sqrt{81}-\sqrt{4}\)=9-2=7
\(\dfrac{2\cdot3+3\cdot6}{4}\)=6
\(\sqrt{7}-\sqrt{7-2\cdot\sqrt{7}+1}\)=\(\sqrt{7}-\left(\sqrt{7}-1\right)\)=1
\(\dfrac{\sqrt{3-2\cdot\sqrt{3}+1}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{\sqrt{3}-1}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=\(\dfrac{1}{\sqrt{2}}\)
\(\dfrac{\sqrt{5}\cdot\left(\sqrt{5}+3\right)}{\sqrt{5}}\)+\(\dfrac{\sqrt{3}\cdot\left(1+\sqrt{3}\right)}{\sqrt{3}+1}\)-(\(\sqrt{5}+3\))
=(\(\sqrt{5}+3\))+\(\sqrt{3}\)-(\(\sqrt{5}+3\))=\(\sqrt{3}\)
\(\sqrt{3}\cdot\sqrt{9}+5\cdot\sqrt{4}\cdot3-2\sqrt{3}\)
=\(\sqrt{3}\cdot\left(3+10-2\right)\)
=\(11\sqrt{3}\)
\(\dfrac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\dfrac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}=\dfrac{\left(\sqrt{5+3\sqrt{2}}+\sqrt{5-3\sqrt{2}}\right)^2}{2\sqrt{2}}-\dfrac{\left(\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}\right)^2}{2\sqrt{2}}=\dfrac{4+2\sqrt{\left(5+3\sqrt{2}\right)\left(5-3\sqrt{2}\right)}-2\sqrt{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}}{2\sqrt{2}}\) \(=\dfrac{4+2\sqrt{7}-2\sqrt{7}}{2\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
a) \(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}=2\sqrt{2^2.5}-\sqrt{5^2.2}+3\sqrt{4^2.5}-\sqrt{8^2.5}\\ =4\sqrt{5}-5\sqrt{2}+12\sqrt{5}-8\sqrt{5}=8\sqrt{5}-5\sqrt{2}\)
b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=\sqrt{4^2.2}-\sqrt{5^2.2}+\sqrt{3^2.2}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)
c) \(3\sqrt{3}+4\sqrt{2}-5\sqrt{27}=3\sqrt{3}+4\sqrt{2}-5\sqrt{3^2.3}=3\sqrt{3}+4\sqrt{2}-15\sqrt{3}=4\sqrt{2}-12\sqrt{3}\)
d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}=\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}\\ =\dfrac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\left(\sqrt{3+1}\right)^2-1^2}\\ =\dfrac{2\sqrt{3}}{\sqrt{3}}=2\)
e)\(\left(2+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=2^2-\left(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)^2=4-\left(\dfrac{9+6\sqrt{3}+3}{3+2\sqrt{3}+1}\right)\\ =4-\left(\dfrac{6\left(2+\sqrt{3}\right)}{2\left(2+\sqrt{3}\right)}\right)=4-3=1\)
b) \(\sqrt{32}-\sqrt{50}+\sqrt{18}=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=\left(4-5+3\right)\sqrt{2}=2\sqrt{2}\)
a) \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+2\sqrt{12}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(6+4\sqrt{3}+2\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\left(8+4\sqrt{3}\right)}\)
\(=\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}\)
\(=\sqrt{\left(4-3\right)\cdot4}\)
\(=\sqrt{1\cdot4}\)
\(=\sqrt{4}\)
\(=2\)
b) \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-\left(5\sqrt{2}-7\right)\)
\(=2\sqrt{2}+6+3\sqrt{2}+1-5\sqrt{2}+7\)
\(=0+14\)
\(=14\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
dài quá ==' cả d, e, f nữa ==' có j rảnh lm cho nhé :D
ĐKXĐ:......
A=\(\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{x^3-\sqrt{27}}\right)\cdot\left(\dfrac{x^2+3+\sqrt{3}x}{\sqrt{3}x}\right)\)
A=\(\dfrac{\sqrt{3}x}{\left(x-\sqrt{3}\right)\left(x^2+\sqrt{3}x+3\right)}\cdot\dfrac{x^2+\sqrt{3}x+3}{\sqrt{3}x}\)
A=\(\dfrac{1}{x-\sqrt{3}}\)
\(A=\sqrt[3]{3+\sqrt{\dfrac{368}{27}}}+\sqrt[3]{3-\sqrt{\dfrac{368}{27}}}\)
\(\Leftrightarrow A^3=6+3A.\sqrt[3]{-\dfrac{125}{27}}=6-5A\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+6\right)=0\)
Vì \(A^2+A+6>0\)
\(\Rightarrow A=1\)