K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)

\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)

=1+1+1+1/2

=3,5

c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)

d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)

=1-1+1-1/2

=1/2

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

21 tháng 10 2018

 A = cos210o + cos220o + cos2 70o + cos280o

 A = cos210o + cos2 20o + sin2 20o + sin210o

A = 1 + 1 = 2

14 tháng 9 2017

P=sin2200+sin2400+sin2450+sin2500+sin2700

đổi sin2500 thành cos2400,sin2700 thành cos2200 rồi thay vào ta được:

sin2200+cos2200+sin2400+cos2400+\(\left(\dfrac{\sqrt{2}}{2}\right)^2\)

=\(2+\dfrac{1}{2}=\dfrac{5}{2}=2,5\)

1 tháng 10 2020

a, cos220o + cos240o + cos250o + cos270o

= (cos220o + cos270o) + (cos240o + cos250o)

= (cos220o + sin220o) + (cos240o + sin240o)

= 1 + 1 = 2

Mình nghĩ chắc sin285o là sin255o

b, sin225o + sin245o + sin265o + sin255o

= (sin225o + sin265o) + (sin245o + sin255o)

= (sin225o + cos225o) + (sin245o + cos245o)

= 1 + 1 = 2

Chúc bn học tốt!

2 tháng 10 2020

Cảm ơn bạn nhiều ạk

16 tháng 7 2017

Hình như sai đề?

12 tháng 8 2020

Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)

Do đó: 

a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)

b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)