Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=27x^3-54x^2+36x-8+15\)
\(=\left(3x-2\right)^3+15\)
Thay x = 12 vào A ta đc:
\(A=\left(3.12-2\right)^3+15\)
\(=34^3+15\)
\(=39319\)
Vậy A =39319 tại x =12
=.= hok tốt!!
a, 27x3 - 54x2y + 36xy2 - 8y3
=(3x)3 - 54 x2y + 36xy2 -(2y)3
=(3x - 2y)3
Thay x=4,y=6 vào biểu thức trên ta được
(3.4 - 2.6)=(12 -12)=0
Vậy với x=4 ,y=6 thì gtrị của bthức là 0
a) \(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^22y+3.3x\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
Thay x = 4 ; y = 6 vào ta được
\(=\left(3.4-2.6\right)^3\)
\(=\left(12-12\right)^3\)
\(=0\)
b) \(27x^3z^6-54x^2yz^4+36xy^2z^2-8y^3\)
\(=\left(3xz^2\right)^3-3.\left(3xz^2\right)^2.2y+3.3xz^2\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3xz^2-2y\right)^3\)
Thay x = 25 ; y = 150 ; z = 2 ta được
\(=\left(3.25.4-2.150\right)^3\)
\(=\left(300-300\right)^3\)
\(=0\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x-2y\right)^3\)
Tại \(x=4;\)\(y=6\) thì gtbt là:
\(\left(3.4-2.6\right)^3=0\)
a) 27x3 + 27x2 + 9x + 1 = (3x + 1)3
Tại x = -13 thì gtbt trên là: [3.(-13) + 1]3 = -54872
b) x3 - 15x2 + 75x - 125 = (x - 5)3
Tại x = 35 thì gtbt trên là: ( 35 - 5)3 = 27000
c) x3 + 12x + 48x + 65 = (x + 4)3 + 1
Tại x = 6 thì gtbt trên là: (6 + 4)3 + 1 = 1001
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-2x^3-4x^3+8x^2+19x^2-38x-16x+32\)
\(=x^3\left(x-2\right)-4x^2\left(x-2\right)+19x\left(x-2\right)-16\left(x-2\right)\)
\(=\left(x^3-4x^2+19x-16\right)\left(x-2\right)\)
A= x^4 - 6x^3 + 27x^2 - 54x + 32
A= x^4 - 3x^3 + 2x^2 - 3x^3 + 9x^2 - 6x + 16x^2 - 48x + 32
A= x^2(x^2 - 3x + 2) - 3x(x^2 - 3x + 2) + 16(x^2 - 3x + 2)
A= (x^2 - 3x + 2) (x^2 - 3x + 16)
Chúc bạn học giỏi nhé!
Lời giải:
\(A=x^4-6x^3+27x^2-54x+32\)
\(=(x^4-x^3)-(5x^3-5x^2)+(22x^2-22x)-(32x-32)\)
\(=x^3(x-1)-5x^2(x-1)+22x(x-1)-32(x-1)\)
\(=(x-1)(x^3-5x^2+22x-32)\)
\(=(x-1)(x^3-2x^2-3x^2+6x+16x-32)\)
\(=(x-1)[x^2(x-2)-3x(x-2)+16(x-2)]\)
\(=(x-1)(x-2)(x^2-3x+16)\)
Ta thấy $x-1,x-2$ là 2 số nguyên liên tiếp nên $(x-1)(x-2)\vdots 2$
Do đó: \(A=(x-1)(x-2)(x^2-3x+16)\vdots 2\), hay $A$ luôn có giá trị chẵn (đpcm)
\(a,M=27x^3+108x^2+144x+64=\left(3x+4\right)^2\)Tại \(x=32\Rightarrow M=\left(3.32+4\right)^3=100^3=1000000\)
\(b,N=27x^3-54x^2+36x-8=\left(3x-2\right)^3\)
Tại \(x=14\Rightarrow N=\left(3.14-2\right)^3=40^3=64000\)
câu a) mũ 3 nha bn o phải mũ 2