Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{2}+\frac{1}{2^2}+.............+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A=1+\frac{1}{2}+...........+\frac{1}{2^{98}}\)
\(\Leftrightarrow2A-A=\left(1+\frac{1}{2}+.......+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{99}}\)
\(\Leftrightarrow2^{99}.A=2^{99}-1\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt A=1/2+(1/2)^2+(1/2)^3+...+(1/2)^98+(1/2)^99+(1/2)^99
=>A=1/2+12/22+13/23+...+198/298+199/299+199/299
=>A=1/2+1/22+1/23+...+1/298+1/299+1/299
=>2A-1/299=1+1/2+1/22+...+1/298
=>(2A-1/299)-(A-1/299)=(1+1/2+1/22+...+1/298)-(1/2+1/22+1/23+...+1/298+1/299)
=>(2A-1/299)-(A-1/299)=1-1/299
=>A=1-1/299 +1/299=1
vậy A=1
chắc thế
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=-\left(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9800}{9801}\right)\)
\(=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{98.100}{99.99}\right)\)
\(=-\left(\frac{1.2.3....98}{2.3...99}.\frac{3.4.5...100}{2.3...99}\right)\)
\(=-\left(\frac{1}{99}.50\right)\)
\(=-\frac{50}{99}\)
Chúc hok tốt!!!
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\left(\frac{1}{99^2}-1\right)\)
= \(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{98.100}{99.99}\)
= \(\frac{\left(1.2.3...98\right).\left(3.4.5...100\right)}{\left(2.3.4...99\right).\left(2.3.4...99\right)}\)
= \(\frac{100}{99.2}\)= \(\frac{50}{99}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)