K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)

24 tháng 3 2017

tất nhên là bằng 00000000000000000000000000000000000000

20 tháng 9 2017

a/ \(\left(4x-5\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy ............

b/ \(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2016}+1\right)+\left(\dfrac{x+2}{2015}+1\right)=\left(\dfrac{x+3}{2014}+1\right)+\left(\dfrac{x+4}{2013}+1\right)\)

\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)

\(\Leftrightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)

\(\Leftrightarrow x+2017\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)

\(\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\)

Vậy ..

20 tháng 9 2017

\(\left(4x-5\right)\left(3x+2\right)=0\)

\(\)\(\Rightarrow\left[{}\begin{matrix}4x-5=0\\3x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

\(\dfrac{x+1}{2016}+\dfrac{x+2}{2015}=\dfrac{x+3}{2014}+\dfrac{x+4}{2013}\)

\(\Rightarrow\dfrac{x+1}{2016}+1+\dfrac{x+2}{2015}+1=\dfrac{x+3}{2014}+1+\dfrac{x+4}{2013}+1\)

\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}=\dfrac{x+2017}{2014}+\dfrac{x+2017}{2013}\)

\(\Rightarrow\dfrac{x+2017}{2016}+\dfrac{x+2017}{2015}-\dfrac{x+2017}{2014}-\dfrac{x+2017}{2013}=0\)

\(\Rightarrow\left(x+2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\ne0\)

Nên:

\(x+2017=0\Rightarrow x=-2017\)

3 tháng 4 2017

Ta có:

\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)

\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=P\Rightarrow S-P=0\)

\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)

Vậy \(\left(S-P\right)^{2016}=0\)

14 tháng 12 2017

\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)

\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)

\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)

\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)

14 tháng 12 2017

\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)

\(=2017\)

Vậy \(\dfrac{B}{A}=2017\)

23 tháng 1 2021

\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)

\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)

\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)

\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)

\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)

\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)

\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)

\(\Leftrightarrow x=2017\)         \(\text{Vậy }x=2017\)

29 tháng 3 2018

Ta có:

*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)

\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)

\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)

\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)

Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)

\(\Rightarrow\left(S-B\right)^{2016}=0\)

20 tháng 11 2021

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

2 tháng 4 2017

25

125

2 tháng 4 2017

A=\(\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\cdot\cdot\dfrac{-2015}{2016}\)

=\(-\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\cdot\cdot\dfrac{2015}{2016}\)

=\(\dfrac{-1}{2016}>\dfrac{-1}{2015}\)

Vậy\(A>\dfrac{-1}{2015}\)