Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
\(\frac{7}{4}\left(\frac{33}{42}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
\(=\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=\frac{231}{4}\cdot\frac{4}{21}=11\)
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
= \(\left[\frac{193}{17}.\frac{2}{193}-\frac{193}{17}.\frac{3}{386}+\frac{33}{34}\right]:\left[\frac{1931}{25}.\frac{7}{1931}+\frac{1931}{25}.\frac{11}{3862}+\frac{9}{2}\right]\)
= \(\left[\frac{2}{17}-\frac{3}{17}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{9}{2}\right]\)
= \(\left[\frac{4}{34}-\frac{6}{34}+\frac{33}{34}\right]:\left[\frac{14}{50}+\frac{11}{50}+\frac{225}{50}\right]\)
= \(\frac{31}{34}:2\)
= \(\frac{31}{68}\)
\(\left(\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{7}{1931}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\left(\frac{4}{386}-\frac{3}{386}\right)\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\left(\frac{14}{3862}+\frac{11}{3862}\right)\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{186}\cdot\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
= \(\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
= \(1:5\)
= \(\frac{1}{5}=0,2\)
\(=\left(\frac{1}{386}-\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}\cdot\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left[\frac{1}{386}-\left(\frac{193}{17}-\frac{33}{34}\right)\right]:\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{386}-\frac{386}{34}\right)\div5\)
\(=\frac{1}{386}\cdot\frac{1}{5}-\frac{386}{34}\cdot\frac{1}{5}=\frac{1}{1930}-\frac{386}{170}=\)là 1 phân số âm.
\(M=\left[\dfrac{4-3}{386}\cdot\dfrac{193}{17}+\dfrac{33}{34}\right]:\left[\dfrac{14+11}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=\left(\dfrac{1}{17}\cdot\dfrac{193}{386}+\dfrac{33}{34}\right):\left[\dfrac{25}{4002}-\dfrac{2001}{25}+\dfrac{9}{2}\right]\)
\(=1:\dfrac{625-2001\cdot4002+9\cdot50525}{100050}\)
\(=-\dfrac{100050}{7552652}\)
\(A=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]\div\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right]\div\left[\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\frac{1}{34}+\frac{33}{34}\right]\div\left[\frac{1}{2}+\frac{9}{2}\right]\)
\(=1\div5=0,2\)
Vậy A = 0,2
A = \(\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{12}\)
A = \(\left(-\frac{1}{4}\right)+\frac{5}{6}-\frac{7}{12}\)
A = \(\frac{7}{12}-\frac{7}{12}\)
A = \(0\).
Mình làm câu A thôi nhé.
Chúc bạn học tốt!
\(\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left[\left(\frac{4}{386}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{3862}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{9}{2}\right]\)
\(=\left(\frac{1}{386}.\frac{193}{17}+\frac{33}{34}\right):\left(\frac{25}{3862}.\frac{1931}{25}+\frac{9}{2}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=1:5\)
\(=\frac{1}{5}\)
Lương Thị Ngân Hà
\(A=\left[\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{33}{34}\right]:\)\(\left[\left(\frac{7}{1931}+\frac{11}{3862}\right).\frac{1931}{25}+\frac{8}{9}\right]\)
\(\Rightarrow A=\left[\left(\frac{2}{193}.\frac{193}{17}\right)-\left(\frac{3}{386}.\frac{193}{17}\right)+\frac{33}{34}\right]\)\(:\left[\left(\frac{7}{1931}.\frac{1931}{25}\right)+\left(\frac{11}{3862}.\frac{1931}{25}\right)+\frac{8}{9}\right]\)
\(\Rightarrow A=\left[\frac{2}{17}-\frac{3}{34}+\frac{33}{34}\right]:\left[\frac{7}{25}+\frac{11}{50}+\frac{8}{9}\right]\)
\(\Rightarrow A=\left[\frac{4}{34}-\frac{3}{34}+\frac{33}{34}\right]:\left[\frac{126}{450}+\frac{99}{450}+\frac{400}{450}\right]\)
\(\Rightarrow A=1:\frac{625}{450}\)
\(\Rightarrow A=1.\frac{25}{18}=\frac{25}{18}\)
Vậy \(A=\frac{25}{18}\)
[(71931 +113862 ).193125 +89 ]
⇒A=[(2193 .19317 )−(3386 .19317 )+3334 ]:[(71931 .193125 )+(113862 .193125 )+89 ]
⇒A=[217 −334 +3334 ]:[725 +1150 +89 ]
⇒A=[434 −334 +3334 ]:[126450 +99450 +400450 ]
⇒A=1:625450
⇒A=1.2518 =2518
Vậy A=2518