Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích phương trình:
\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)
Vậy \(a=-2;b=5\)
a) \(E=\left(\frac{1}{x+2}+\frac{1}{x-2}\right).\frac{x-2}{x}\left(ĐKXĐ:x\ne0;x\ne\pm2\right)\)
\(=\left(\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{x}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
b) Khi x = 6 \(\Rightarrow E=\frac{2}{x+2}=\frac{2}{6+2}=\frac{2}{8}=\frac{1}{4}\)
c) \(E=4\Leftrightarrow\frac{2}{x+2}=4\Leftrightarrow4\left(x+2\right)=2\Leftrightarrow4x+8=2\Leftrightarrow x=\frac{-3}{2}\)
Vậy để E = 4 thì x = -3/2
d) \(E>0\Leftrightarrow\frac{2}{x+2}>0\Leftrightarrow2>0\)
Vậy phương trình vô nghiệm
e) \(E\in Z\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Nếu x + 2 = 1 thì x = -1
Nếu x + 2 = -1 thì x = -3
Nếu x + 2 = 2 thì x = 0
Nếu x + 2 = -2 thì x = -4
Vậy ...
Nek bạn giải thích hộ mik tí nữa nhé :Tại sao 2 > 0 thì phương trình lại vô nghiệm ?
trả lời
8x^3-3x^2=0
<=> x^2(8x-3)=0
=> \(\orbr{\begin{cases}x=0\\x=\frac{3}{8}\end{cases}}\)
hok toots
\(\frac{12x^3y^2}{18xy^5}=\frac{12x^3y^2:6xy}{18xy^5:6xy}=\frac{2x^2y}{3y^4}\),\(\frac{-21b^2y^2}{-28by}=\frac{-21b^2y^2:-7by}{-28by:-7by}=\frac{3by}{4}\)\(\frac{-49a^3}{14b^3}=\frac{-49a^3:7}{14b^3:7}=\frac{-7a^3}{2b^3}\)\(\frac{18ab}{27bc}=\frac{18ab:9b}{27bc:9b}=\frac{2a}{3c}\)
a) \(\frac{18ab}{27bc}=\frac{2.9.ab}{3.9.bc}=\frac{2a}{3c}\)
b) \(\frac{-21b^2y^2}{-28by}=\frac{3.\left(-7\right).b.b.y.y}{4.\left(-7\right).b.y}=\frac{3by}{4}\)
c) \(\frac{-49a^3}{14b^3}=\frac{7.\left(-7\right).a^3}{7.2.b^3}=\frac{-7a^3}{2b^3}\)
d) \(\frac{12x^3y^2}{18xy^5}=\frac{2.6.x.x^2.y^2}{3.6.x.y^2.y^3}=\frac{2x^2}{3y^3}\)
Giải:
\(\frac{1+3x}{6}-\frac{2+x}{9}=-4+x\)
\(\text{⇔}\frac{3+9x}{18}-\frac{4+2x}{18}=-\frac{72}{18}+\frac{18x}{18}\)
\(\text{⇔}3+9x-4+2x=-72+18x\)
\(\text{⇔}3+9x-4+2x+72-18x=0\)
\(\text{⇔}71-7x=0\)
\(\text{⇔}x=\frac{71}{7}\)
Vậy...
Chúc bạn học tốt@@
Trả lời :
Cần j bạn ?
Hok_Tốt
#Thiên_Hy
________