K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

A = \(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

2A = 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)

2A + A =( 1 - \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+.........+ \(\frac{1}{2^{98}}\)\(\frac{1}{2^{99}}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{2^2}\)\(+\)\(\frac{1}{2^3}\)\(-\)\(\frac{1}{2^4}\)\(+\)........... \(+\)\(\frac{1}{2^{99}}\)\(-\)\(\frac{1}{2^{100}}\)

3A = 1 \(-\) \(\frac{1}{2^{100}}\)

\(\Rightarrow\)A = \(\frac{1-\frac{1}{2^{100}}}{3}\)\(\frac{1}{3}\)

23 tháng 8 2017

Sorry nha cái này tớ chưa học nên hổng biết làm

7 tháng 1 2019

\(\text{Trả lời : }\)

\(\text{Bạn tham khảo nha !}\)

Câu hỏi của Hàn Băng - Toán lớp 9 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/204748999615.html

Chúc bạn học tốt !

22 tháng 4 2018

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}+\frac{102}{102}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{102.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}\right)}\)

\(A=\frac{1}{102}\)

A = 1/102

31 tháng 10 2018

Ta có : \(B=\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)

\(\Rightarrow2B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\)

\(\Rightarrow2B+B=\left(1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\right)\)

\(\Rightarrow3B=1-\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^{99}}+\frac{1}{2}-\frac{1}{2^2}+...-\frac{1}{2^{100}}\)

\(\Rightarrow3B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow3B=1-\frac{1}{2^{100}}\)

\(\Rightarrow B=\frac{1-\frac{1}{2^{100}}}{3}\)

10 tháng 10 2017

\(M=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(2M=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(2M+M=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\right)\)

\(3M=1-\frac{1}{2^{100}}\)

\(M=\frac{1-\frac{1}{2^{100}}}{3}\)