K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)

Ta có :

\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)

\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(A=2\times\frac{49}{102}\)

\(A=\frac{49}{51}\)

16 tháng 5 2017

đề bài mk chỉ cho 50 thôi ko có 51 đâu

nên mk cho bạn 1k thôi nhé

30 tháng 3 2016

A = 1/ 1+1/22+1/32+. . . +1/50< 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50

<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50

<=> A< 1 + 1 - 1/50 = 2 - 1/50 

Vậy A < 2

Nhớ k nhé bạn ^^

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

16 tháng 7 2016

A = 1/2 + 1/3 + 1/4 + ... + 1/31

A = (1/2 + 1/3) + (1/4 + 1/5 + 1/6 + 1/7) + (1/8 + 1/9 + ... + 1/15) + (1/16 + 1/17 + ... + 1/31)

A < 1/2 × 2 + 1/4 × 4 + 1/8 × 8 + 1/16 × 16

A < 1 + 1 + 1 + 1

A < 4 ( đpcm)

1 tháng 4 2019

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2n-2\right).2n}\)

                                                                 \(< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\)

                                                                \(< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

\(\Rightarrow\) \(A< \frac{1}{4}\)

Study well ! >_<

20 tháng 3 2017

tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào

19 tháng 3 2017

ai trả lời đi

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)