K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(A=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

14 tháng 6 2017

SBT nha

NV
7 tháng 11 2019

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

NV
7 tháng 11 2019

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

\(A=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)

=\(\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\left(\sqrt{a}-4\right).\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)

Điều kiện bạn tự ghi nhé haha

\(B=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}+\dfrac{\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\left(\sqrt{a}+3\right).\left(\sqrt{a}-3\right)-\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{a-9-a+4+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{1}{\sqrt{a}-2}\)

\(=\dfrac{1}{\sqrt{a}+1}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\)

30 tháng 11 2017

Quy đồng biểu thức ta được

=\(\dfrac{9+3\sqrt{6}-2\sqrt{6}-4+3\sqrt{6}-6+6+2\sqrt{6}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\dfrac{5-2\sqrt{6}}{4}\)

=\(\dfrac{5+2\sqrt{6}}{1}\).\(\dfrac{5-2\sqrt{6}}{4}\)

=\(\dfrac{1}{4}\)

28 tháng 7 2016

b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)

=0

c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)

\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))

\(=2\sqrt{3}\)

a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))

=0

28 tháng 7 2016

Hỏi đáp Toán

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

NV
29 tháng 9 2019

\(A=\sqrt[3]{2-\sqrt{5}}\left(\sqrt[6]{\left(2+\sqrt{5}\right)^2}+\sqrt[3]{2+\sqrt{5}}\right)\)

\(=\sqrt[3]{2-\sqrt{5}}.2\sqrt[3]{2+\sqrt{5}}=2\sqrt[3]{4-5}=-2\)

\(B=\sqrt[4]{\left(3-2\sqrt{2}\right)^2}-\sqrt{2}=\sqrt{3-2\sqrt{2}}-\sqrt{2}\)

\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1\)

\(C=\sqrt[4]{\left(6-2\sqrt{5}\right)^2}=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

\(D=1+\sqrt[4]{\left(4-2\sqrt{3}\right)^2}=1+\sqrt{4-2\sqrt{3}}\)

\(=1+\sqrt{\left(\sqrt{3}-1\right)^2}=1+\sqrt{3}-1=\sqrt{3}\)

Câu e lấy nguyên văn từ sách thầy Vũ Hữu Bình:

Đặt \(x=\sqrt[4]{5}\Rightarrow x^4=5\Rightarrow5-x^4=0\)

\(E=\frac{2}{\sqrt{4-3x+2x^2-x^3}}=\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}=\frac{2\left(x+1\right)}{\sqrt{-x^5+5x+4}}\)

\(E=\frac{2\left(x+1\right)}{\sqrt{x\left(5-x^4\right)+4}}=\frac{2\left(x+1\right)}{\sqrt{4}}=x+1=\sqrt[4]{5}+1\)

Không hiểu ý tưởng nhân cả tử và mẫu với \(x+1\) từ đâu ra luôn

3 tháng 12 2017

a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

suy ra tìm đc x

3 tháng 12 2017

câu b đặt t =\(3x^2+5x+8\)

ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

\(\Rightarrow t=16\)

\(\Leftrightarrow3x^2+5x+8=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)