K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2021

Giải HPT:

\(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}27y=4098\\x+7y=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\approx152\\x=955\end{matrix}\right.\)

Mik chỉ làm gần bằng đc thôi vì y là số thập phân.

22 tháng 9 2021

1) \(A=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4+2\sqrt{3}}}{2}=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}=\dfrac{\sqrt{3}+1}{2}\)

2) \(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=2019\\27x=4098\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8609}{9}\\y=\dfrac{1366}{9}\end{matrix}\right.\)

22 tháng 9 2021

\(\left\{{}\begin{matrix}3x-6y=1959\\x+7y=2019\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-6y=1959\\3x+21y=6057\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+7y=2019\\27y=4098\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{8609}{9}\\y=\dfrac{1366}{9}\end{matrix}\right.\)

14 tháng 5 2021

Lời giải

a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:

P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3

b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2

Vậy nghiệm hệ phương trình (1; 2)

Có gì bạn tham khảo nha//

 

31 tháng 1 2018

dk bn tự xd nhé vui

\(\left\{{}\begin{matrix}1+\dfrac{1}{x+y}=\dfrac{2}{\sqrt{3x}}\left(1\right)\\1-\dfrac{1}{x+y}=\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(2\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2=\dfrac{2}{\sqrt{3x}}+\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(1\right)+\left(2\right)\\\dfrac{2}{x+y}=\dfrac{2}{\sqrt{3x}}-\dfrac{4\sqrt{2}}{\sqrt{7y}}\left(1\right)-\left(2\right)\end{matrix}\right.\)

nhân vế vs vế 2 hpt trên \(\dfrac{4}{x+y}=\left(\dfrac{2}{\sqrt{3x}}-\dfrac{4\sqrt{2}}{\sqrt{7y}}\right)\left(\dfrac{2}{\sqrt{3x}}+\dfrac{4\sqrt{2}}{\sqrt{7y}}\right)\)

\(\Leftrightarrow\dfrac{4}{x+y}=\dfrac{4}{3x}-\dfrac{32}{7y}\)

\(\Leftrightarrow\dfrac{1}{x+y}=\dfrac{1}{3x}-\dfrac{8}{7y}\)

đến đây bn giải nốt nhé vui

29 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{4x^2+3xy-7y^2}=a\\\sqrt{3x^2-2xy-y^2}=b\end{cases}}\)

\(\Rightarrow a^2-b^2=x^2+5xy-6y^2\)

Từ đó ta có pt (1)

\(\Leftrightarrow a-b+4\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(1+4a+4b\right)=0\)

\(\Leftrightarrow\)a = b

\(\Leftrightarrow x^2+5xy-6y^2=0\)

\(\Leftrightarrow x^2-2xy+y^2+7xy-7y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+6y\right)=0\)

Tới đây thì bài toán đơn giản rồi bạn làm tiếp nhé

5 tháng 11 2017

   

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

Bài 2: 

Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)

9 tháng 5 2021

ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)

Đặt \(\sqrt{x-2019}=a,......\)

Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)

\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)

- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)

\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)

- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)

- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )

Vậy ...

 

17 tháng 7 2023

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

17 tháng 7 2023

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)