Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Tính
a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
2) tìm x
\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)
\(\dfrac{4}{5}x=0\)
\(x=0:\dfrac{4}{5}\)
\(x=0\)
b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{4}\)
1. Tính:
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{1}-\dfrac{1}{10}\)
= \(\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
= \(\dfrac{1}{1}-\dfrac{1}{100}\)
= \(\dfrac{100}{100}-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
2. Tìm x, biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{14}{5}\)
\(x=\dfrac{14}{5}:\dfrac{4}{5}\)
\(x=\dfrac{14}{5}.\dfrac{5}{4}\)
\(x=14.\dfrac{1}{4}\)
\(x=\dfrac{14}{4}\)
Vậy \(x=\dfrac{14}{4}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)
\(\dfrac{2}{5}x=\dfrac{62}{20}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{10}.\dfrac{5}{2}\)
\(x=\dfrac{31}{2}.\dfrac{2}{2}\)
\(x=\dfrac{31}{2}.1\)
\(x=\dfrac{31}{2}\)
Vậy \(x=\dfrac{31}{2}\)
bài này mk tự làm ko sao chép trên mạng
nếu thấy đúng thì tick đúng cho mk nha
B1: Tính nhanh:
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{1}{10}\cdot\dfrac{-9}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\dfrac{5}{14}+\dfrac{-9}{10}\cdot\dfrac{1}{2}+\dfrac{1}{7}\cdot\dfrac{-9}{10}\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{1}{2}+\dfrac{1}{7}\right)\)
\(E=\dfrac{-9}{10}\cdot\left(\dfrac{5}{14}+\dfrac{7}{14}+\dfrac{2}{14}\right)\)
\(E=\dfrac{-9}{10}\cdot1=\dfrac{-9}{10}\)
B2: Chứng tỏ rằng:
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow1-\dfrac{1}{100}=\dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}< 1\)
Tick mình nha!
Đề bài :
a) dãy các phân số trên có phải theo quy luật ko ?
b) tính tổng các phân số của dãy trên
1) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\)
\(=\dfrac{49}{50}\)
2) \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{13}{39}-\dfrac{1}{39}=\dfrac{12}{39}=\dfrac{4}{13}\)
3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{73}-\dfrac{1}{76}\)
\(=\dfrac{1}{4}-\dfrac{1}{76}\)
\(=\dfrac{19}{76}-\dfrac{1}{76}=\dfrac{18}{76}=\dfrac{9}{38}\)
1)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)
2)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\\ =\dfrac{1}{3}-\dfrac{1}{39}\\ =\dfrac{13}{39}-\dfrac{1}{39}\\ =\dfrac{12}{39}=\dfrac{4}{13}\)
3) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{73.76}\\ =\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{73}-\dfrac{1}{79}\\ =\dfrac{1}{4}-\dfrac{1}{79}\\ =\dfrac{75}{316}\)
a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)
\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)
\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)
\(x=\dfrac{-9198}{4400}\)
a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)
\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)
\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)
\(x+\dfrac{206}{100}=5\)
\(x=5-\dfrac{206}{100}\)
\(x=\dfrac{147}{50}\)
Vậy \(x=\dfrac{147}{50}\)
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
a) A= \(\dfrac{12}{19}.\dfrac{7}{15}.\dfrac{-13}{17}.\dfrac{19}{12}.\dfrac{17}{13}\)
A = \(\left(\dfrac{12}{19}.\dfrac{19}{12}\right).\left(\dfrac{-13}{17}.\dfrac{17}{13}\right).\dfrac{7}{15}\)A = 1 . ( - 1 ) . \(\dfrac{7}{15}\)
A = ( - 1 ) . \(\dfrac{7}{15}\)
A = \(\dfrac{-7}{15}\)
b) B = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{9.10}\)
B = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
B = 1 - \(\dfrac{1}{10}\)
B = \(\dfrac{9}{10}\)
c) C = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
C = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
C = \(\dfrac{1}{3}-\dfrac{1}{99}\)
C =\(\dfrac{32}{99}\)
Câu d) làm tương tự như câu c)
a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)
A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)
A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)
b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)
B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)
Giải:
a) \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
\(=\dfrac{1}{100}\)
Vậy giá trị của biểu thức trên là \(\dfrac{1}{100}\).
b) \(\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\left(\dfrac{4}{11}+\dfrac{3}{121}-\dfrac{47}{121}\right)\)
\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\left(\dfrac{44}{121}+\dfrac{3}{121}-\dfrac{47}{121}\right)\)
\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\dfrac{0}{121}\)
\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).0\)
\(=0\)
Vậy giá trị của biểu thức trên là 0.
c) \(-\dfrac{2}{5}\left(\dfrac{15}{17}-\dfrac{9}{15}\right)-\dfrac{2}{5}\left(\dfrac{2}{17}+\dfrac{-2}{5}\right)\)
\(=-\dfrac{2}{5}\left[\left(\dfrac{15}{17}-\dfrac{9}{15}\right)+\left(\dfrac{2}{17}+\dfrac{-2}{5}\right)\right]\)
\(=-\dfrac{2}{5}\left(\dfrac{15}{17}-\dfrac{9}{15}+\dfrac{2}{17}+\dfrac{-2}{5}\right)\)
\(=-\dfrac{2}{5}\left(1-1\right)\)
\(=-\dfrac{2}{5}.0\)
\(=0\)
Vậy giá trị của biểu thức trên là 0.
Chúc bạn học tốt!!!
\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^3}{3.4}...\dfrac{99^2}{99.100}\)
\(=\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}....\dfrac{99.99}{99.100}\)
\(=\dfrac{1.1.2.2.3.3.....99.99}{1.2.2.3.3.4....99.100}\)
\(=\dfrac{1.2.3...99}{1.2.3....99}.\dfrac{1.2.3....99}{2.3.4....100}=1.\dfrac{1}{100}=\dfrac{1}{100}\)
Bài 2:
\(\dfrac{7}{3\cdot4}-\dfrac{9}{4\cdot5}+\dfrac{11}{5\cdot6}-\dfrac{13}{6\cdot7}+\dfrac{15}{7\cdot8}-\dfrac{17}{8\cdot9}+\dfrac{19}{9\cdot10}\)
\(=\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{9}+\dfrac{1}{10}\)
=1/3+1/10
=13/30
=\(\dfrac{2^2.2^2.3^2.....9^2}{1.2^2.3^2.4^2....9^2.10}\)=\(\dfrac{2^2}{10}\)=\(\dfrac{2}{5}\)