Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi hình như phân thức cuối cùng bạn bị sai bạn thử xem lại đi nha!
Ta có :a+b+c=0
a+b=-c
(a+b)2=(-c)2
a2+b2+2ab=c2
a2+b2-c2+2ab=0
\(\Rightarrow\)a2+b2-c2=-2ab (1)
Tương tự như trên , nên ta có :
b2+c2-a2=-2ab (2)
c2+b2-a2=-2cb (3)
Ta thay (1) , (2) và (3) , vào phân thức trên , ta có :
\(\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2cb}\)
\(=-\frac{1}{2}+-\frac{1}{2}+-\frac{1}{2}\)
\(=-\frac{3}{2}\)
Ta có : \(a+b+c=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-1\)
\(\left(ab+bc+ac\right)^2=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)
\(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\Leftrightarrow a^4+b^4+c^4=4-2\left(a^2+b^2+c^2\right)=4-2=2\)
Ta có:
a+b+c=0 => (a+b+c)2=0 => a2+b2+c2 = -2(ab+bc+ac)
=> a4+b4+c4 + 2(a2b2+b2c2 + a2c2) = 4(a2b2+b2c2 + a2c2)+8(ab2c + abc2 + a2bc)
=> a4+b4+c4 =2(a2b2+b2c2 + a2c2) + 8abc(a+b+c)
=> a4+b4+c4 =2(a2b2+b2c2 + a2c2)
Mặt khác, vì
a2+b2+c2 = -2(ab+bc+ac)=2
=> ab +bc+ac = -1
=>a2b2+b2c2 + a2c2+2(ab2c + abc2 + a2bc) = 1
=> a2b2+b2c2 + a2c2 = 1
=> a4+b4+c4 = 1* 2 =2
a+b+c=0 => (a+b+c)^2=0 <=> a^2+b^2+c^2+2(ab+bc+ca)=0
<=> 2+2(ab+bc+ca)=0 => ab+bc+ca=-1
(ab+bc+ca)^2=(ab)^2+(bc)^2+(ca)^2+2ab^2c+2abc^2+2a^2bc=(ab)^2+(bc)^2+(ca)^2+2abc(a+b+c)
=> (ab)^2+(bc)^2+(ca)^2 = (-1)^2 = 1
(a^2+b^2+c^2)^2 = a^4+b^4+c^4+2[(ab)^2+(bc)^2+(ca)^2] = a^4+b^4+c^4 + 2
<=>4=a^4+b^4+c^4+2 => a^4+b^4+c^4 = 2
Bạn kiểm tra lại có sai chỗ nào không nhé
(a+b+c)^2+(a+b-c)^2
=(a+b+c)(a+b+c)+(a+b-c)(a+b-c)
=a2+ab+ac+ab+b2+bc+ac+bc+c2+a2+ab-ac+ab+b2-bc-ac-bc+c2
=(a2+a2)+(ab+ab+ab+ab)+(ac+ac-ac-ac)+(b2+b2)+(bc+bc-bc-bc)+(c2+c2)
=2a2+4ab+0+2b2+0+2c2
=2a2+4ab+2b2+2c2
=2(a2+2ab+b2+c2)
(a+b+c)2+(a+b-c)2
=(a+b+c)(a+b+c)+(a+b-c)(a+b-c)
=a2+ab+ac+ab+b2+bc+ac+bc+c2+a2+ab-ac+ab+b2-bc-ca-cb+c2
=a2+a2+ab+ab+ab+ab+ac+ac-ac-ac+bc+bc-bc-cb+b2+b2+c2+c2
=2a2+4ab-ac+2b2+c2