Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a^2-b^2\right)^2\)
\(=\left(a-b\right)^2\left(a+b\right)^2\)
\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)
\(=\left[\left(a^2+b^2\right)-2ab\right]\left[\left(a^2+b^2\right)+2ab\right]\)
Thay \(a^2+b^2=8\) và \(ab=-2\) Ta có:
\(\left(8-2\cdot-2\right)\left(8+2\cdot-2\right)=\left(8+4\right)\left(8-4\right)=12\cdot4=48\)
Ta có: a+b=9
=> (a+b)^2=81
=> (a-b)^2 + 4ab =81
=> (a-b)^2=81-4.20
=> (a-b)^2=80-81
=>(a-b)^2=1
=> a-b=1 hoặc a-b=-1
mà a<b nên a-b <0 => a-b=-1
Vậy (a-b)^2015=(-1)^2015=-1
Ta có
a2+b2+c2 = ab+bc+ca
<=> 2(a2+b2+c2)= 2(ab+bc+ca)
<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
Thế vào pt thứ (2) ta được
a8 + b8 + c8 = 3
<=> 3a8 = 3
<=> a8 = 1
<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)
Từ (3) => P = 1 + 1 - 1 = 1
Từ (4) => P = - 1 + 1 + 1 = 1
a) Ta có : \(AC=\frac{3}{8}.CE\)
\(\Leftrightarrow AE-CE=\frac{3}{8}.CE\)
\(\Leftrightarrow\frac{AE-CE}{CE}=\frac{3}{8}\)
\(\Leftrightarrow8AE-8CE=3CE\)
\(\Leftrightarrow8AE=11CE\)
\(\Leftrightarrow\frac{AE}{CE}=\frac{11}{8}\)
mà \(\frac{AD}{BD}=\frac{11}{8}\)
\(\Rightarrow\frac{AE}{CE}=\frac{AD}{BD}\)
\(\Rightarrow BC//DE\)( định lý Ta lét đảo )
b) Xét \(\Delta DAE\)có BC // DE : theo hệ quả của định lý Ta lét ta có :
\(\frac{AD}{BD}=\frac{DE}{BC}\)mà \(\frac{AD}{BD}=\frac{11}{8}\)
\(\Rightarrow\frac{11}{8}=\frac{DE}{3}\)
\(\Rightarrow DE=\frac{3.11}{8}\)
\(\Rightarrow DE=\frac{33}{8}\left(cm\right)\)
Ta có : \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Thay vào ta có : \(8^2-4.10\)
\(=64-40\)
\(=24\)
Vậy khi \(a-b=8,ab=10\) thì \(\left(a+b\right)^2=24\)
hằng đẳng thức nâng cao
(a2+b)2=(a-b)2+4ab
= 82+40=64+40=104