K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

Ta có : \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

Thay vào ta có : \(8^2-4.10\)

                          \(=64-40\)

                          \(=24\)

Vậy khi \(a-b=8,ab=10\) thì \(\left(a+b\right)^2=24\)

26 tháng 9 2016

hằng đẳng thức nâng cao

(a2+b)2=(a-b)2+4ab

= 82+40=64+40=104

15 tháng 10 2017

17 tháng 8 2023

\(\left(a^2-b^2\right)^2\) 

\(=\left(a-b\right)^2\left(a+b\right)^2\)

\(=\left(a^2-2ab+b^2\right)\left(a^2+2ab+b^2\right)\)

\(=\left[\left(a^2+b^2\right)-2ab\right]\left[\left(a^2+b^2\right)+2ab\right]\)

Thay \(a^2+b^2=8\) và \(ab=-2\) Ta có:

\(\left(8-2\cdot-2\right)\left(8+2\cdot-2\right)=\left(8+4\right)\left(8-4\right)=12\cdot4=48\)

17 tháng 8 2023

N= (a2 - b2)2
= - (a2 + b2)2
= (-8)2
=64

 

19 tháng 10 2016

Ta có: a+b=9
=> (a+b)^2=81
=> (a-b)^2 + 4ab =81
=> (a-b)^2=81-4.20
=> (a-b)^2=80-81
=>(a-b)^2=1
=> a-b=1 hoặc a-b=-1
mà a<b nên a-b <0 => a-b=-1
Vậy (a-b)^2015=(-1)^2015=-1

27 tháng 8 2019

\(\left(a+b\right)^2=a-b=7^2ab=10\)

\(\Rightarrow a^2-2ab+b^2=7\times8\)

\(\Rightarrow a^2+b^2+2ab=2.10=56\)

\(\Rightarrow a^2+b^2=56\)

\(\Rightarrow a^2+2ab+2b^2=56+2.10=76\)

Vậy sẽ bằng 76

b Tương tự 

5 tháng 1 2017

Ta có 

a2+b2+c2 = ab+bc+ca

<=> 2(a2+b2+c2)= 2(ab+bc+ca)

<=> (a - 2ab + b2) + (b2 - 2bc + c2) + (c- 2ac + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

Thế vào pt thứ (2) ta được

a8 + b8 + c8 = 3

<=> 3a8 = 3

<=> a8 = 1

<=> a = b = c = 1(3) hoặc a = b = c = - 1(4)

Từ (3) => P = 1 + 1 - 1 = 1

Từ (4) => P = - 1 + 1 + 1 = 1

17 tháng 1 2021

a) Ta có : \(AC=\frac{3}{8}.CE\)

\(\Leftrightarrow AE-CE=\frac{3}{8}.CE\)

\(\Leftrightarrow\frac{AE-CE}{CE}=\frac{3}{8}\)

\(\Leftrightarrow8AE-8CE=3CE\)

\(\Leftrightarrow8AE=11CE\)

\(\Leftrightarrow\frac{AE}{CE}=\frac{11}{8}\)

mà \(\frac{AD}{BD}=\frac{11}{8}\)

\(\Rightarrow\frac{AE}{CE}=\frac{AD}{BD}\)

\(\Rightarrow BC//DE\)( định lý Ta lét đảo )

b) Xét \(\Delta DAE\)có BC // DE : theo hệ quả của định lý Ta lét ta có :

\(\frac{AD}{BD}=\frac{DE}{BC}\)mà \(\frac{AD}{BD}=\frac{11}{8}\)

\(\Rightarrow\frac{11}{8}=\frac{DE}{3}\)

\(\Rightarrow DE=\frac{3.11}{8}\)

\(\Rightarrow DE=\frac{33}{8}\left(cm\right)\)