Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2016:\left(\frac{0.4-\frac{2}{9}+\frac{2}{11}}{1.4-\frac{7}{9}+\frac{7}{11}}.\frac{-1\frac{1}{6}+0.875-0.7}{\frac{1}{3}-0.25+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}.\frac{\frac{-7}{6}+\frac{7}{8}-\frac{7}{10}}{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}\right)\)
<=>\(B=2016:\left(\frac{2.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}{5.\left(\frac{1}{5}.\frac{1}{9}.\frac{1}{11}\right)}.\frac{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}{\frac{2}{6}-\frac{2}{8}-\frac{2}{10}}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}\right)\)
<=>\(B=2016:\left(\frac{2}{5}.\frac{7}{2}\right)\)
<=>\(B=2016:\frac{7}{5}\)
<=>\(B=2016.\frac{5}{7}\)
<=>\(B=1440\)
Vậy B=1440
k cho mink nha
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
Trả lời
\(A=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{2.\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)}{\frac{7}{6}-\frac{7}{8}-\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right).\)
\(A=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+3^2+...+2015^2\right)\)
\(A=0:\left(1^2+2^2+3^2+.....+2015^2\right)\)
A=0
Study well
\(A=...\)
\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left[\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\right]:\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{1}{\frac{7}{2}}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=\left(\frac{2}{7}-\frac{2}{7}\right):\left(1^2+2^2+...+2015^2\right)\)
\(=0:\left(1^2+2^2+...+2015^2\right)=0\)
\(B=\frac{1}{3}-\frac{3}{4}+0,6+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}-\frac{48}{64}+\frac{9}{15}+\frac{1}{64}-\frac{8}{36}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow B=\frac{3}{15}+\frac{9}{15}+\frac{1}{15}+\left(-\frac{48}{64}+\frac{1}{64}\right)+\left(-\frac{8}{36}-\frac{1}{36}\right)\)
\(\Rightarrow B=\frac{13}{15}-\frac{47}{64}-\frac{1}{4}\)
\(\Rightarrow B=-\frac{113}{960}\)
\(C=0\)
\(D=\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow D=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\Rightarrow D=1\)
D= \(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}......-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left[1-(\frac{1}{2}-\frac{1}{2}+......+\frac{1}{98}-\frac{1}{99})\right]\)
=\(\frac{1}{99}-\left(1-0-0-.....-0-\frac{1}{99}\right)\)
=\(\frac{1}{99}-1-\frac{1}{99}\)
=1
= 1/3 - 1/3 + 5/7 - 5/7 - 7/9 + 7/9 +9/11 - 9/11 -11/13 + 11/13 +13/15
= 0 + 0 - 0 + 0 -0 + 13/15
= 0 + 13/15
= 13/15
\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
\(=\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{3}{5}-\frac{3}{5}\right)+\left(\frac{5}{7}-\frac{5}{7}\right)+\left(\frac{7}{9}-\frac{7}{9}\right)+\left(\frac{9}{11}-\frac{9}{11}\right)+\left(\frac{11}{13}-\frac{11}{13}\right)+\frac{13}{15}\)
\(=0+0+0+0+0+0+\frac{13}{15}\)
\(=\frac{13}{15}\)
\(3x.\left(x-\frac{2}{3}\right)=0\)
\(\Leftrightarrow3x=0\)hoặc \(x-\frac{2}{3}=0\)
\(3x=0\Rightarrow x=0\)
\(x-\frac{2}{3}=0\Rightarrow x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy..
Bn tham khảo nhé