Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{298^3+48^3}{346}-298\cdot48\)
\(=298^2-2\cdot298\cdot48+48^2\)
\(=250^2=62500\)
2)Tính nhanh:
a)\(202^2-54^2+256.352\)
\(=\left(202-54\right)\left(202+54\right)+256.352\)
\(=148.256+256.352\)
\(=256\left(148+352\right)\)
\(=256.500\)
\(=128000\)
b)\(621^2-769.373-148^2\)
\(=621^2-148^2-769.373\)
\(=\left(621-148\right)\left(621+148\right)-769.373\)
\(=473.769-769.373\)
\(=769\left(473-373\right)\)
\(=769.100\)
\(=76900\)
\(a,\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-4y+5\right)\left(3x+2y+3\right)\)
\(b,9x^2+90x+225-\left(x-7\right)^2\)
\(=9\left(x^2+10x+25\right)-\left(x-7\right)^2\)
\(=9\left(x+5\right)^2-\left(x-7\right)^2\)
\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)
\(=\left(3x+15\right)^2-\left(x-7\right)^2\)
\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)
\(=\left(2x+22\right)\left(4x+8\right)\)
\(=2\left(x+11\right).4\left(x+2\right)\)
\(=8\left(x+2\right)\left(x+11\right)\)
\(c,49\left(y-4\right)^2-9y^2-36y-36\)
\(=\left\{\left[7\left(y-4\right)\right]^2-\left(3y\right)^2\right\}-\left(36y+36\right)\)
\(=\left(7y-28-3y\right)\left(7y-28+3y\right)-36\left(y+1\right)\)
\(=\left(4y-28\right)\left(10y-28\right)-36\left(y+1\right)\)
\(=4\left(y-7\right)2\left(5y-14\right)-36\left(y+1\right)\)
\(=8\left(y-7\right)\left(5y-14\right)-36\left(y+1\right)\)
\(=4\left[2\left(y-7\right)\left(5y-14\right)-9\left(y+1\right)\right]\)
mk ko chắc là câu này mk lm đg
\(d,x^2-5x-14\)
\(=x^2+2x-7x-14\)
\(=x\left(x+2\right)-\left(7x+14\right)\)
\(=x\left(x+2\right)-7\left(x+2\right)\)
\(=\left(x+2\right)\left(x-7\right)\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
ý a)
(a+b)^2=a^2+b^2+2ab
=> 529=a^2+b^2+246 => a^2+b^2=283
(a^2+b^2)^2=a^4+b^4+2.a^2.b^2
=> 80089=a^4+b^4+30258 => a^4+b^4=49831
(a^2+b^2)(a^4+b^4)=a^6+b^6+a^2.b^4+b^2.a^4=a^6+b^6+a^2.b^2.(a^2+b^2)
=> 14102173=a^6+b^6+15129.283 => a^6+b^6=9820666
còn lại bạn tự tính
a,=(202-54)(202+54)+256*352=248.*256+256*352=256*(248+352)=256*600=256*6*100=153600
b. làm tương tự
c,=5/(1+2+...+10)=5.\(\frac{10.\left(10+1\right)}{2}\)=275
(ta có công thức 1+2+...+n=\(\frac{n.\left(n+1\right)}{2}\) dễ dàng chứng minh)
Lời giải:
$(a-b)^2=a^2-2ab+b^2=(a^2+2ab+b^2)-4ab=(a+b)^2-4ab=49-4.10=9$
$\Rightarrow a-b=3$ (do $a>b$)
Lời giải:
a)
\(A=75^2+50.75+25^2=75^2+2.25.75+25^2\)
\(=(75+25)^2=100^2=10000\)
b) \(123^2+23^2-46.123=123^2-2.23.123+23^2\)
\(=(123-23)^2=100^2=10000\)
c) \((3^4-1)(3^4+1)-9^4\)
\(=[(3^4)^2-1^2]-9^4=(9^4-1)-9^4=-1\)
a) \(A=\left(37^3+12^3\right):49-37\times12\)
\(=\left(37+12\right)\left(37^2+12^2-37\times12\right):49-37\times12\)
\(=37^2+12^2-2\times37\times12\)
\(=\left(37-12\right)^2=25^2=625\)
b) \(B=\left(52^3-48^3\right):4+52\times48\)
\(=\left(52-48\right)\left(52^2+48^2+52\times48\right):4+52\times48\)
\(=52^2+48^2+2\times52\times48\)
\(=\left(52+48\right)^2=100^2=10000\)