K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 9 2021

\(A^2+B^2=\left(A+B\right)^2-2AB=5\)

\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)

\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)

B.

\(A^2+B^2=\left(A+B\right)^2-2AB=2\)

\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)

20 tháng 9 2021

Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)

\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)

28 tháng 9 2017

\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)

\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)

\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)

\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)

\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)

15 tháng 8 2020

a) \(ĐKXĐ:\hept{\begin{cases}a>0\\b>0\\a\ne b\end{cases}}\)

\(A=\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}:\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}-\frac{b}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)

\(\Leftrightarrow A=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\frac{a\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right)\left(a-b\right)}{\sqrt{ab}\left(a-b\right)}\)

\(\Leftrightarrow A=\left(\sqrt{a}-\sqrt{b}\right)\cdot\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{a^2-a\sqrt{ab}-b\sqrt{ab}-b^2-a^2+b^2}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-a\sqrt{ab}-b\sqrt{ab}}\)

\(\Leftrightarrow A=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{-\sqrt{ab}\left(a+b\right)}\)

\(\Leftrightarrow A=\frac{-\sqrt{a}-\sqrt{b}}{a+b}\)

b) Thay \(a=6-2\sqrt{5}\)và \(b=5\)vào A ta được :

\(A=\frac{-\sqrt{6-2\sqrt{5}}-\sqrt{5}}{6-2\sqrt{5}+5}=\frac{-\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}}{1-2\sqrt{5}}=\frac{1-2\sqrt{5}}{1-2\sqrt{5}}=1\)

Vậy ...

3 tháng 11 2017

Áp dụng hằng đẳng thức mà làm 

3 tháng 11 2017

Hàng đẳng thức nào

15 tháng 10 2017

a)  B= \(\frac{1}{\sqrt{a}}\)(ĐKXĐ: a,b>0)   B) Khi a= \(6+2\sqrt{5}\)thì B=\(\frac{1}{\sqrt{\left(\sqrt{5}+1\right)^2}}\)=\(\frac{1}{\sqrt{5}+1}\)     C) Do \(\sqrt{a}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>0\)\(\Rightarrow\frac{1}{\sqrt{a}}>-1\)

31 tháng 8 2019

giải rõ hộ với bạn

13 tháng 3 2019

Ủa bài này có cần phân tích thêm gì đâu? Thay vào là ra luôn mà bạn?

\(P=a+b-ab=2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right).\)

\(=5\)